Write equations for the stepwise formation of each of the following complex ions. a. \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\) b. \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}{ }^{3-}\)

Short Answer

Expert verified
The stepwise formation equations for the given complex ions are: a. For \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\): 1. \(\mathrm{Ni^{2+}} + \mathrm{CN^-} \rightarrow \mathrm{NiCN^{+}}\) 2. \(\mathrm{NiCN^{+}} + \mathrm{CN^-} \rightarrow \mathrm{Ni(CN)_{2}}\) 3. \(\mathrm{Ni(CN)_{2}} + \mathrm{CN^-} \rightarrow \mathrm{Ni(CN)_{3}^{-}}\) 4. \(\mathrm{Ni(CN)_{3}^{-}} + \mathrm{CN^-} \rightarrow \mathrm{Ni(CN)_{4}^{2-}}\) b. For \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}{ }^{3-}\): 1. \(\mathrm{V^{3+}} + \mathrm{C_{2}O_{4}^{2-}} \rightarrow \mathrm{VC_{2}O_{4}^{+}}\) 2. \(\mathrm{VC_{2}O_{4}^{+}} + \mathrm{C_{2}O_{4}^{2-}} \rightarrow \mathrm{V(C_{2}O_{4})_{2}^{-}}\) 3. \(\mathrm{V(C_{2}O_{4})_{2}^{-}} + \mathrm{C_{2}O_{4}^{2-}} \rightarrow \mathrm{V(C_{2}O_{4})_{3}^{3-}}\)

Step by step solution

01

Identify metal ions and ligands for both complex ions

For the given complex ions, we can identify the metal ions and ligands as follows: a. In \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\): Metal ion: \(\mathrm{Ni^{2+}}\) Ligand: \(\mathrm{CN^-}\) (cyanide ion) b. In \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}{ }^{3-}\): Metal ion: \(\mathrm{V^{3+}}\) Ligand: \(\mathrm{C_{2}O_{4}^{2-}}\) (oxalate ion)
02

Write stepwise formation equations for \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\)

We will now show the stepwise formation of the complex ion \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\) by adding cyanide ions to the nickel(II) ion: 1. \(\mathrm{Ni^{2+}} + \mathrm{CN^-} \rightarrow \mathrm{NiCN^{+}}\) 2. \(\mathrm{NiCN^{+}} + \mathrm{CN^-} \rightarrow \mathrm{Ni(CN)_{2}}\) 3. \(\mathrm{Ni(CN)_{2}} + \mathrm{CN^-} \rightarrow \mathrm{Ni(CN)_{3}^{-}}\) 4. \(\mathrm{Ni(CN)_{3}^{-}} + \mathrm{CN^-} \rightarrow \mathrm{Ni(CN)_{4}^{2-}}\)
03

Write stepwise formation equations for \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}{ }^{3-}\)

Similarly, we will show the stepwise formation of the complex ion \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}{ }^{3-}\) by adding oxalate ions to the vanadium(III) ion: 1. \(\mathrm{V^{3+}} + \mathrm{C_{2}O_{4}^{2-}} \rightarrow \mathrm{VC_{2}O_{4}^{+}}\) 2. \(\mathrm{VC_{2}O_{4}^{+}} + \mathrm{C_{2}O_{4}^{2-}} \rightarrow \mathrm{V(C_{2}O_{4})_{2}^{-}}\) 3. \(\mathrm{V(C_{2}O_{4})_{2}^{-}} + \mathrm{C_{2}O_{4}^{2-}} \rightarrow \mathrm{V(C_{2}O_{4})_{3}^{3-}}\) These are the stepwise formation equations for the given complex ions.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a. Calculate the molar solubility of AgBr in pure water. \(K_{\text {sp }}\) for \(\mathrm{AgBr}\) is \(5.0 \times 10^{-13}\) b. Calculate the molar solubility of AgBr in \(3.0 M \mathrm{NH}_{3}\). The overall formation constant for \(\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\) is \(1.7 \times 10^{7}\), that is, \(\mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \longrightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}(a q) \quad K=1.7 \times 10^{7}\) c. Compare the calculated solubilities from parts a and b. Explain any differences. d. What mass of AgBr will dissolve in \(250.0 \mathrm{~mL}\) of \(3.0 \mathrm{M} \mathrm{NH}_{3}\) ? e. What effect does adding \(\mathrm{HNO}_{3}\) have on the solubilities calculated in parts a and b?

For which salt in each of the following groups will the solubility depend on pH? a. \(\mathrm{AgF}, \mathrm{AgCl}, \mathrm{AgBr}\) c. \(\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Sr}\left(\mathrm{NO}_{2}\right)_{2}\) b. \(\mathrm{Pb}(\mathrm{OH})_{2}, \mathrm{PbCl}_{2}\) d. \(\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Ni}(\mathrm{CN})_{2}\)

Calculate the mass of manganese hydroxide present in \(1300 \mathrm{~mL}\) of a saturated manganese hydroxide solution. For \(\mathrm{Mn}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=\) \(2.0 \times 10^{-13}\) 89\. On a hot day, a \(200.0-\mathrm{mL}\) sample of a saturated solution of \(\mathrm{PbI}_{2}\) was allowed to evaporate until dry. If \(240 \mathrm{mg}\) of solid \(\mathrm{PbI}_{2}\) was collected after evaporation was complete, calculate the \(K_{\mathrm{sp}}\) value for \(\mathrm{PbI}_{2}\) on this hot day.

The solubility of the ionic compound \(\mathrm{M}_{2} \mathrm{X}_{3}\), having a molar mass of \(288 \mathrm{~g} / \mathrm{mol}\), is \(3.60 \times 10^{-7} \mathrm{~g} / \mathrm{L}\). Calculate the \(K_{\mathrm{sp}}\) of the compound.

A solution contains \(2.0 \times 10^{-3} \mathrm{M} \mathrm{Ce}^{3+}\) and \(1.0 \times 10^{-2} \mathrm{M} \mathrm{IO}_{3}^{3-}\). Will \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}(s)\) precipitate? \(\left[K_{\text {sp }}\right.\) for \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}\) is \(\left.3.2 \times 10^{-10} .\right]\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free