Chapter 17: Problem 2
For a liquid, which would you expect to be larger, \(\Delta S_{\text {fusion }}\) or \(\Delta S_{\text {evaporation }}\) ? Why?
Chapter 17: Problem 2
For a liquid, which would you expect to be larger, \(\Delta S_{\text {fusion }}\) or \(\Delta S_{\text {evaporation }}\) ? Why?
All the tools & learning materials you need for study success - in one app.
Get started for freePredict the sign of \(\Delta S^{\circ}\) for each of the following changes. a. \(\mathrm{Na}(s)+\frac{1}{2} \mathrm{Cl}_{2}(g) \longrightarrow \mathrm{NaCl}(s)\) b. \(\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})\) c. \(\mathrm{NaCl}(s) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)\) d. \(\mathrm{NaCl}(s) \longrightarrow \mathrm{NaCl}(l)\)
List three different ways to calculate the standard free energy change, \(\Delta G^{\circ}\), for a reaction at \(25^{\circ} \mathrm{C}\). How is \(\Delta G^{\circ}\) estimated at temperatures other than \(25^{\circ} \mathrm{C}\) ? What assumptions are made?
Consider the following reaction: $$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$$Calculate \(\Delta G\) for this reaction under the following conditions (assume an uncertainty of \(\pm 1\) in all quantities): a. \(T=298 \mathrm{~K}, P_{\mathrm{N}_{2}}=P_{\mathrm{H}_{2}}=200 \mathrm{~atm}, P_{\mathrm{NH}_{3}}=50 \mathrm{~atm}\) b. \(T=298 \mathrm{~K}, P_{\mathrm{N}_{2}}=200 \mathrm{~atm}, P_{\mathrm{H}_{2}}=600 \mathrm{~atm}, P_{\mathrm{NH}_{3}}=200 \mathrm{~atm}\)
Given the following data: $$\begin{aligned}2 \mathrm{H}_{2}(g)+\mathrm{C}(s) \longrightarrow \mathrm{CH}_{4}(g) & & \Delta G^{\circ}=-51 \mathrm{~kJ} \\ 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(g) & \Delta \mathrm{H}_{2} \mathrm{O}(l) & & \Delta G^{\circ}=-474 \mathrm{~kJ} \\ \mathrm{C}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) & \Delta G^{\circ} &=-394 \mathrm{~kJ}\end{aligned}$$ Calculate \(\Delta G^{\circ}\) for \(\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(l) .\)
Entropy has been described as "time's arrow." Interpret this view of entropy.
What do you think about this solution?
We value your feedback to improve our textbook solutions.