Chapter 17: Problem 29
Predict the sign of \(\Delta S_{\text {surr }}\) for the following processes. a. \(\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g)\) b. \(I_{2}(g) \longrightarrow I_{2}(s)\)
Chapter 17: Problem 29
Predict the sign of \(\Delta S_{\text {surr }}\) for the following processes. a. \(\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g)\) b. \(I_{2}(g) \longrightarrow I_{2}(s)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEntropy has been described as "time's arrow." Interpret this view of entropy.
Consider the following reaction: \(\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{Cl}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{HOCl}(g) \quad K_{298}=0.090\) For \(\mathrm{Cl}_{2} \mathrm{O}(g)\), \(\Delta G_{\mathrm{f}}^{\circ}=97.9 \mathrm{~kJ} / \mathrm{mol}\) \(\Delta H_{\mathrm{f}}^{\circ}=80.3 \mathrm{~kJ} / \mathrm{mol}\) \(S^{\circ}=266.1 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\) a. Calculate \(\Delta G^{\circ}\) for the reaction using the equation \(\Delta G^{\circ}=\) \(-R T \ln (K)\) b. Use bond energy values (Table 8.4) to estimate \(\Delta H^{\circ}\) for the reaction. c. Use the results from parts a and \(b\) to estimate \(\Delta S^{\circ}\) for the reaction. d. Estimate \(\Delta H_{\mathrm{f}}^{\circ}\) and \(S^{\circ}\) for \(\mathrm{HOCl}(g)\). e. Estimate the value of \(K\) at \(500 . \mathrm{K}\). f. Calculate \(\Delta G\) at \(25^{\circ} \mathrm{C}\) when \(P_{\mathrm{H}_{2} \mathrm{O}}=18\) torr, \(P_{\mathrm{Cl}_{2} \mathrm{O}}=2.0\) torr, and \(P_{\mathrm{HOCl}}=0.10\) torr.
The third law of thermodynamics states that the entropy of a perfect crystal at \(0 \mathrm{~K}\) is zero. In Appendix \(4, \mathrm{~F}^{-}(a q), \mathrm{OH}^{-}(a q)\), and \(\mathrm{S}^{2-}(a q)\) all have negative standard entropy values. How can \(S^{\circ}\) values be less than zero?
Hydrogen sulfide can be removed from natural gas by the reaction $$2 \mathrm{H}_{2} \mathrm{~S}(g)+\mathrm{SO}_{2}(g) \rightleftharpoons 3 \mathrm{~S}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)$$ Calculate \(\Delta G^{\circ}\) and \(K\) (at \(298 \mathrm{~K}\) ) for this reaction. Would this reaction be favored at a high or low temperature?
Predict the sign of \(\Delta S^{\circ}\) for each of the following changes. a. \(\mathrm{Na}(s)+\frac{1}{2} \mathrm{Cl}_{2}(g) \longrightarrow \mathrm{NaCl}(s)\) b. \(\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})\) c. \(\mathrm{NaCl}(s) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)\) d. \(\mathrm{NaCl}(s) \longrightarrow \mathrm{NaCl}(l)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.