For mercury, the enthalpy of vaporization is \(58.51 \mathrm{~kJ} / \mathrm{mol}\) and the entropy of vaporization is \(92.92 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\). What is the normal boiling point of mercury?

Short Answer

Expert verified
The normal boiling point of mercury is approximately \(629.6 \ \text{K}\).

Step by step solution

01

Simplify the Clausius-Clapeyron equation

Since \(\ln{1} = 0\), we can simplify the Clausius-Clapeyron equation as follows: \[0 = \frac{-\Delta H_\text{vap}}{R} (\frac{1}{T_\text{b}} - \frac{1}{T_1})\]
02

Use \(\Delta S_\text{vap}\) to find the relationship between \(\Delta H_\text{vap}\) and \(T_\text{b}\)

We have the relationship: \[\Delta S_\text{vap} = \frac{\Delta H_\text{vap}}{T_\text{b}}\] Rearranging for \(T_\text{b}\): \[T_\text{b} = \frac{\Delta H_\text{vap}}{\Delta S_\text{vap}}\]
03

Plug in the values of enthalpy and entropy of vaporization for mercury

We are given the values: \[\Delta H_\text{vap} = 58.51 \ \text{kJ/mol}\] \[\Delta S_\text{vap} = 92.92 \ \text{J/K} \cdot \text{mol}\] First, let's convert the enthalpy of vaporization to J/mol: \[\Delta H_\text{vap} = 58.51 \ \text{kJ/mol} \times \frac{1000 \ \text{J}}{1 \ \text{kJ}} = 58510 \ \text{J/mol}\] Now we can plug the values into the equation: \[T_\text{b} = \frac{58510 \ \text{J/mol}}{92.92 \ \text{J/K} \cdot \text{mol}}\]
04

Calculate the normal boiling point of mercury

Dividing the enthalpy by the entropy: \[T_\text{b} = \frac{58510 \ \text{J/mol}}{92.92 \ \text{J/K} \cdot \text{mol}} = 629.6 \ \text{K}\] Therefore, the normal boiling point of mercury is approximately \(629.6 \ \text{K}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

List three different ways to calculate the standard free energy change, \(\Delta G^{\circ}\), for a reaction at \(25^{\circ} \mathrm{C}\). How is \(\Delta G^{\circ}\) estimated at temperatures other than \(25^{\circ} \mathrm{C}\) ? What assumptions are made?

Carbon monoxide is toxic because it bonds much more strongly to the iron in hemoglobin (Hgb) than does \(\mathrm{O}_{2}\). Consider the following reactions and approximate standard free energy changes: $$\begin{array}{clr}\mathrm{Hgb}+\mathrm{O}_{2} \longrightarrow \mathrm{HgbO}_{2} & \Delta G^{\circ}=-70 \mathrm{~kJ} \\ \mathrm{Hgb}+\mathrm{CO} \longrightarrow \mathrm{HgbCO} & \Delta G^{\circ}=-80 \mathrm{~kJ} \end{array}$$ Using these data, estimate the equilibrium constant value at \(25^{\circ} \mathrm{C}\) for the following reaction: $$\mathrm{HgbO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{HgbCO}+\mathrm{O}_{2}$$

Calculate \(\Delta G^{\circ}\) for \(\mathrm{H}_{2} \mathrm{O}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(g)\) at \(600 . \mathrm{K}\) using the following data: \(\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(g) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(g) \quad K=2.3 \times 10^{6}\) at \(600 . \mathrm{K}\) \(2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(g) \quad K=1.8 \times 10^{37}\) at 600. \(\mathrm{K}\)

Hydrogen cyanide is produced industrially by the following exothermic reaction: $$2 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g)+2 \mathrm{CH}_{4}(g) \stackrel{\mathrm{low}^{\circ} \mathrm{c}}{\mathrm{Pt} \cdot \mathrm{Rh}} 2 \mathrm{HCN}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$$ Is the high temperature needed for thermodynamic or kinetic reasons?

Given the following data: $$\begin{array}{lr}2 \mathrm{C}_{6} \mathrm{H}_{6}(l)+15 \mathrm{O}_{2}(g) \longrightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \\ \Delta G^{\circ}=-6399 \mathrm{~kJ} \\\\\mathrm{C}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) & \Delta G^{\circ}=-394 \mathrm{~kJ} \\ \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) & \Delta G^{\circ}=-237 \mathrm{~kJ} \end{array}$$ calculate \(\Delta G^{\circ}\) for the reaction $$6 \mathrm{C}(s)+3 \mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6}(l)$$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free