Chapter 17: Problem 7
Predict the sign of \(\Delta S\) for each of the following and explain. a. the evaporation of alcohol b. the freezing of water c. compressing an ideal gas at constant temperature d. dissolving \(\mathrm{NaCl}\) in water
Chapter 17: Problem 7
Predict the sign of \(\Delta S\) for each of the following and explain. a. the evaporation of alcohol b. the freezing of water c. compressing an ideal gas at constant temperature d. dissolving \(\mathrm{NaCl}\) in water
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven the following data: $$\begin{array}{lr}2 \mathrm{C}_{6} \mathrm{H}_{6}(l)+15 \mathrm{O}_{2}(g) \longrightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \\ \Delta G^{\circ}=-6399 \mathrm{~kJ} \\\\\mathrm{C}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) & \Delta G^{\circ}=-394 \mathrm{~kJ} \\ \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) & \Delta G^{\circ}=-237 \mathrm{~kJ} \end{array}$$ calculate \(\Delta G^{\circ}\) for the reaction $$6 \mathrm{C}(s)+3 \mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6}(l)$$
For the reaction at \(298 \mathrm{~K}\), $$2 \mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(g)$$ the values of \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) are \(-58.03 \mathrm{~kJ}\) and \(-176.6 \mathrm{~J} / \mathrm{K}, \mathrm{re}-\) spectively. What is the value of \(\Delta G^{\circ}\) at \(298 \mathrm{~K}\) ? Assuming that \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) do not depend on temperature, at what temperature is \(\Delta G^{\circ}=0 ?\) Is \(\Delta G\) negative above or below this temperature?
Consider the following reaction at \(800 . \mathrm{K}\) : $$\mathrm{N}_{2}(g)+3 \mathrm{~F}_{2}(g) \longrightarrow 2 \mathrm{NF}_{3}(g)$$ An equilibrium mixture contains the following partial pressures: \(P_{\mathrm{N}_{2}}=0.021 \mathrm{~atm}, P_{\mathrm{F}_{2}}=0.063 \mathrm{~atm}, P_{\mathrm{NF}_{3}}=0.48 \mathrm{~atm} .\) Calculate \(\Delta G^{\circ}\) for the reaction at \(800 . \mathrm{K}\).
Calculate \(\Delta G^{\circ}\) for \(\mathrm{H}_{2} \mathrm{O}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(g)\) at \(600 . \mathrm{K}\) using the following data: \(\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(g) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(g) \quad K=2.3 \times 10^{6}\) at \(600 . \mathrm{K}\) \(2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(g) \quad K=1.8 \times 10^{37}\) at 600. \(\mathrm{K}\)
For ammonia \(\left(\mathrm{NH}_{3}\right.\) ), the enthalpy of fusion is \(5.65 \mathrm{~kJ} / \mathrm{mol}\) and the entropy of fusion is \(28.9 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\). a. Will \(\mathrm{NH}_{3}(s)\) spontaneously melt at \(200 . \mathrm{K}\) ? b. What is the approximate melting point of ammonia?
What do you think about this solution?
We value your feedback to improve our textbook solutions.