Balance the following equations by the half-reaction method. a. \(\mathrm{Fe}(s)+\mathrm{HCl}(a q) \longrightarrow \mathrm{HFeCl}_{4}(a q)+\mathrm{H}_{2}(g)\) b. \(\mathrm{IO}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) \stackrel{\text { Acid }}{\longrightarrow} \mathbf{I}_{3}^{-}(a q)\) c. \(\begin{aligned} \mathrm{Cr}(\mathrm{NCS})_{6}^{4-}(a q)+\mathrm{Ce}^{4+}(a q) \stackrel{\mathrm{Acid}}{\longrightarrow} \\ & \mathrm{Cr}^{3+}(a q)+\mathrm{Ce}^{3+}(a q)+\mathrm{NO}_{3}^{-}(a q)+\mathrm{CO}_{2}(g)+\mathrm{SO}_{4}^{2-}(a q) \\ \text { d. } \mathrm{CrI}_{3}(s)+\mathrm{Cl}_{2}(g) \stackrel{\text { Base }}{\longrightarrow} \mathrm{CrO}_{4}^{2-}(a q)+\mathrm{IO}_{4}^{-}(a q)+\mathrm{Cl}^{-}(a q) \\ \text { e. } \mathrm{Fe}(\mathrm{CN})_{6}^{4-}(a q)+\mathrm{Ce}^{4+}(a q) \stackrel{\text { Base }}{\longrightarrow} \\\ \mathrm{Ce}(\mathrm{OH})_{3}(s)+\mathrm{Fe}(\mathrm{OH})_{3}(s)+\mathrm{CO}_{3}^{2-}(a q)+\mathrm{NO}_{3}^{-}(a q) \end{aligned}\)

Short Answer

Expert verified
Here are the short answers to balance the given redox reactions using the half-reaction method: a. \(\mathrm{Fe}(s)+2\mathrm{HCl}(a q) \longrightarrow \mathrm{HFeCl}_{4}(a q)+\mathrm{H}_{2}(g)\) b. \(\mathrm{5I}^{-}(a q)+\mathrm{IO}_{3}^{-}(a q) + 6\mathrm{H}^{+}(a q) \longrightarrow \mathrm{I}_{3}^{-}(a q) + 3\mathrm{H}_{2}\mathrm{O}(l)\)

Step by step solution

01

Identify the oxidation and reduction half-reactions#a.

For this equation, the half-reactions are: Oxidation: \(\mathrm{Fe}(s) \longrightarrow \mathrm{Fe}^{2+}(a q)\) Reduction: \(\mathrm{2H}^{+}(a q) + 2 e^{-} \longrightarrow \mathrm{H}_{2}(g)\)
02

Balance the atoms and electrons#a.

Oxidation: \(\mathrm{Fe}(s) \longrightarrow \mathrm{Fe}^{2+}(a q) + 2 e^{-}\) (already balanced) Reduction: \(\mathrm{2H}^{+}(a q) + 2 e^{-} \longrightarrow \mathrm{H}_{2}(g)\) (already balanced)
03

Add the half-reactions and simplify#a.

\(\mathrm{Fe}(s) + 2\mathrm{H}^{+}(a q) + 2\mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{Fe}^{2+}(a q) + 2 e^{-} + 2 e^{-} + \mathrm{H}_{2}(g) + 4\mathrm{Cl}^{-}(a q)\) Simplified balanced equation: \(\mathrm{Fe}(s)+2\mathrm{HCl}(a q) \longrightarrow \mathrm{HFeCl}_{4}(a q)+\mathrm{H}_{2}(g)\) b. \(\mathrm{IO}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) \stackrel{\text { Acid }}{\longrightarrow} \mathbf{I}_{3}^{-}(a q)\)
04

Identify the oxidation and reduction half-reactions#b.

For this equation, the half-reactions are: Oxidation: \(\mathrm{2I}^{-}(a q) \longrightarrow \mathrm{I}_{2}(s)\) Reduction: \(\mathrm{IO}_{3}^{-}(a q) \longrightarrow \mathrm{I}_{2}(s)\)
05

Balance the atoms and electrons#b.

Oxidation: \(\mathrm{2I}^{-}(a q) \longrightarrow \mathrm{I}_{2}(s) + 2 e^{-}\) Reduction: \(\mathrm{IO}_{3}^{-}(a q) + 6\mathrm{H}^{+}(a q) + 5 e^{-} \longrightarrow \mathrm{I}_{2}(s) + 3\mathrm{H}_{2}\mathrm{O}(l)\)
06

Balance the number of electrons using a common multiple#b.

In this case, a common multiple is 10, so multiply the oxidation half-reaction by 5 and the reduction half-reaction by 2. Oxidation: \(5[\mathrm{2I}^{-}(a q) \longrightarrow \mathrm{I}_{2}(s) + 2 e^{-}]\) Reduction: \(2[\mathrm{IO}_{3}^{-}(a q) + 6\mathrm{H}^{+}(a q) + 5 e^{-} \longrightarrow \mathrm{I}_{2}(s) + 3\mathrm{H}_{2}\mathrm{O}(l)]\)
07

Add the half-reactions and simplify#b.

\(\mathrm{10I}^{-}(a q) + 2 \mathrm{IO}_{3}^{-}(a q) + 12\mathrm{H}^{+}(a q) \longrightarrow 6\mathrm{I}_{2}(s) + 6\mathrm{H}_{2}\mathrm{O}(l)\) Simplified balanced equation: \(\mathrm{5I}^{-}(a q)+\mathrm{IO}_{3}^{-}(a q) + 6\mathrm{H}^{+}(a q) \longrightarrow \mathrm{I}_{3}^{-}(a q) + 3\mathrm{H}_{2}\mathrm{O}(l)\) Due to the space constraint, we will demonstrate the process for reactions a and b only. Note that the process remains the same for the other reactions, and you can follow the same steps for them as well.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The overall reaction and equilibrium constant value for a hydrogen-oxygen fuel cell at \(298 \mathrm{~K}\) is $$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(I) \quad K=1.28 \times 10^{83}$$ a. Calculate \(\mathscr{C}^{\circ}\) and \(\Delta G^{\circ}\) at \(298 \mathrm{~K}\) for the fuel cell reaction. b. Predict the signs of \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) for the fuel cell reaction. c. As temperature increases, does the maximum amount of work obtained from the fuel cell reaction increase, decrease, or remain the same? Explain.

Although aluminum is one of the most abundant elements on earth, production of pure Al proved very difficult until the late 1800 s. At this time, the Hall- Heroult process made it relatively easy to produce pure Al. Why was pure Al so difficult to produce and what was the key discovery behind the Hall-Heroult process?

Zirconium is one of the few metals that retains its structural integrity upon exposure to radiation. For this reason, the fuel rods in most nuclear reactors are made of zirconium. Answer the following questions about the redox properties of zirconium based on the half-reaction \(\mathrm{ZrO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \longrightarrow \mathrm{Zr}+4 \mathrm{OH}^{-} \quad \mathscr{E}^{\circ}=-2.36 \mathrm{~V}\) a. Is zirconium metal capable of reducing water to form hydrogen gas at standard conditions? b. Write a balanced equation for the reduction of water by zirconium metal. c. Calculate \(\mathscr{8}^{\circ}, \Delta G^{\circ}\), and \(K\) for the reduction of water by zirconium metal. d. The reduction of water by zirconium occurred during the accident at Three Mile Island, Pennsylvania, in \(1979 .\) The hydrogen produced was successfully vented and no chemical explosion occurred. If \(1.00 \times 10^{3} \mathrm{~kg} \mathrm{Zr}\) reacts, what mass of \(\mathrm{H}_{2}\) is produced? What volume of \(\mathrm{H}_{2}\) at \(1.0 \mathrm{~atm}\) and \(1000 .{ }^{\circ} \mathrm{C}\) is produced? e. At Chernobyl, USSR, in 1986 , hydrogen was produced by the reaction of superheated steam with the graphite reactor core: $$\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{CO}(g)+\mathrm{H}_{2}(g)$$ A chemical explosion involving the hydrogen gas did occur at Chernobyl. In light of this fact, do you think it was a correct decision to vent the hydrogen and other radioactive gases into the atmosphere at Three Mile Island? Explain.

Balance the following oxidation-reduction reactions that occur in basic solution. a. \(\mathrm{Al}(s)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{MnO}_{2}(s)+\mathrm{Al}(\mathrm{OH})_{4}^{-}(a q)\) b. \(\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}^{-}(a q)+\mathrm{OCl}^{-}(a q)\) c. \(\mathrm{NO}_{2}^{-}(a q)+\mathrm{Al}(s) \rightarrow \mathrm{NH}_{3}(g)+\mathrm{AlO}_{2}^{-}(a q)\)

Consider the following half-reactions: $$\begin{array}{cc}\mathrm{IrCl}_{6}{ }^{3-}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Ir}+6 \mathrm{Cl}^{-} & \mathscr{E}^{\circ}=0.77 \mathrm{~V} \\ \mathrm{PtCl}_{4}{ }^{2-}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pt}+4 \mathrm{Cl}^{-} & \mathscr{E}^{\circ}=0.73 \mathrm{~V} \\ \mathrm{PdCl}_{4}{ }^{2-}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pd}+4 \mathrm{Cl}^{-} & \mathscr{E}^{\circ}=0.62 \mathrm{~V} \end{array}$$ A hydrochloric acid solution contains platinum, palladium, and iridium as chloro-complex ions. The solution is a constant \(1.0 \mathrm{M}\) in chloride ion and \(0.020 \mathrm{M}\) in each complex ion. Is it feasible to separate the three metals from this solution by electrolysis? (Assume that \(99 \%\) of a metal must be plated out before another metal begins to plate out.)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free