Sketch the galvanic cells based on the following half-reactions. Show the direction of electron flow, show the direction of ion migration through the salt bridge, and identify the cathode and anode. Give the overall balanced equation, and determine \(\mathscr{E}^{\circ}\) for the galvanic cells. Assume that all concentrations are \(1.0 M\) and that all partial pressures are \(1.0 \mathrm{~atm} .\) \(\begin{array}{ll}\text { a. } \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} & \mathscr{6}^{\circ}=1.78 \mathrm{~V} \\ \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2} & \mathscr{6}^{\circ}=0.68 \mathrm{~V}\end{array}\) b. \(\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}\) \(\mathscr{6}^{\circ}=-1.18 \mathrm{~V}\) \(\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe} \quad \mathscr{6}^{\circ}=-0.036 \mathrm{~V}\)

Short Answer

Expert verified
In the first galvanic cell, the anode (oxidation) half-reaction is \(\mathrm{O}_{2} + 2\mathrm{H}^{+} \rightarrow \mathrm{H}_{2}\mathrm{O}_{2}\), and the cathode (reduction) half-reaction is \(\mathrm{H}_{2}\mathrm{O}_{2} + 2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2}\mathrm{O}\). The overall balanced equation is \(\mathrm{O}_{2} + 2\mathrm{H}^{+} \rightarrow 2\mathrm{H}_{2}\mathrm{O}\), with \(\mathscr{E}^{\circ}_{cell} = 1.1\mathrm{V}\). In the second galvanic cell, the anode half-reaction is \(\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}\), and the cathode half-reaction is \(\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}\). The overall balanced equation is \(3\mathrm{Mn}^{2+} + 2\mathrm{Fe}^{3+} \rightarrow 3\mathrm{Mn} + 2\mathrm{Fe}\), with \(\mathscr{E}^{\circ}_{cell} = 1.144\mathrm{V}\). In both cells, electrons flow from the anode to the cathode, and ions migrate through the salt bridge towards their respective electrode.

Step by step solution

01

Identifying the half-reactions

Compare the standard cell potentials of the given reactions; the reaction with the higher standard cell potential will be the reduction half-reaction (cathode), while the other reaction will be the oxidation half-reaction (anode). Reduction half-reaction: $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\( (\)\mathscr{E}^{\circ}=1.78 \mathrm{~V}$) Oxidation half-reaction: $\mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}\( (\)\mathscr{E}^{\circ}=0.68 \mathrm{~V}$)
02

Electron flow and ion migration direction

Electrons flow from the anode to the cathode. Anions from the salt bridge move towards the anode and cations move towards the cathode.
03

Overall balanced equation

To get the overall balanced equation, we add the oxidation and reduction half-reactions: \(\mathrm{O}_{2} + 2\mathrm{H}^{+} + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{H}_{2}\mathrm{O}_{2} + 2\mathrm{H}^{+} + 2\mathrm{e}^{-} \rightarrow 2\mathrm{H}_{2}\mathrm{O}\) Simplified: \(\mathrm{O}_{2} + 2\mathrm{H}^{+} \rightarrow 2\mathrm{H}_{2}\mathrm{O}\)
04

Standard cell potential

To find the standard cell potential, subtract the standard cell potential of the anode (oxidation) from the standard cell potential of the cathode (reduction): \(\mathscr{E}^{\circ}_{cell} = \mathscr{E}^{\circ}_{cathode} - \mathscr{E}^{\circ}_{anode} = 1.78\mathrm{V} - 0.68\mathrm{V} = 1.1\mathrm{V}\) ##Sketching the cell for part b##
05

Identifying the half-reactions

Compare the standard cell potentials of the given reactions; the reaction with the higher standard cell potential will be the reduction half-reaction (cathode), while the other reaction will be the oxidation half-reaction (anode). Reduction half-reaction: \(\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}\) (\(\mathscr{E}^{\circ}=-0.036 \mathrm{~V}\)) Oxidation half-reaction: \(\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}\) (\(\mathscr{E}^{\circ}=-1.18 \mathrm{~V}\))
06

Electron flow and ion migration direction

Electrons flow from the anode to the cathode. Anions from the salt bridge move towards the anode and cations move towards the cathode.
07

Overall balanced equation

To get the overall balanced equation, first balance the electrons by multiplying the manganese half-reaction by 3 and the iron half-reaction by 2. Then, add the oxidation and reduction half-reactions: \(3(\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}) + 2(\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe})\) \(3\mathrm{Mn}^{2+} + 6\mathrm{e}^{-} + 2\mathrm{Fe}^{3+} + 6\mathrm{e}^{-} \rightarrow 3\mathrm{Mn} + 2\mathrm{Fe}\) Simplified: \(3\mathrm{Mn}^{2+} + 2\mathrm{Fe}^{3+} \rightarrow 3\mathrm{Mn} + 2\mathrm{Fe}\)
08

Standard cell potential

To find the standard cell potential, subtract the standard cell potential of the anode (oxidation) from the standard cell potential of the cathode (reduction): \(\mathscr{E}^{\circ}_{cell} = \mathscr{E}^{\circ}_{cathode} - \mathscr{E}^{\circ}_{anode} = -0.036\mathrm{V} - (-1.18\mathrm{V}) = 1.144\mathrm{V}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A fuel cell designed to react grain alcohol with oxygen has the following net reaction: $$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(I)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$$ The maximum work that 1 mole of alcohol can do is \(1.32 \times\) \(10^{3} \mathrm{~kJ} .\) What is the theoretical maximum voltage this cell can achieve at \(25^{\circ} \mathrm{C} ?\)

You want to "plate out" nickel metal from a nickel nitrate solution onto a piece of metal inserted into the solution. Should you use copper or zinc? Explain.

Consider the following galvanic cell at \(25^{\circ} \mathrm{C}\) : $$\mathrm{Pt}\left|\mathrm{Cr}^{2+}(0.30 M), \mathrm{Cr}^{3+}(2.0 M)\right|\left|\mathrm{Co}^{2+}(0.20 M)\right| \mathrm{Co}$$ The overall reaction and equilibrium constant value are $$2 \mathrm{Cr}^{2+}(a q)+\mathrm{Co}^{2+}(a q) \longrightarrow{2 \mathrm{Cr}^{3+}(a q)+\mathrm{Co}(s)} \quad K=2.79 \times 10^{7}$$ Calculate the cell potential, \(\mathscr{E}\), for this galvanic cell and \(\Delta G\) for the cell reaction at these conditions.

The ultimate electron acceptor in the respiration process is molecular oxygen. Electron transfer through the respiratory chain takes place through a complex series of oxidation-reduction reactions. Some of the electron transport steps use iron-containing proteins called cytochromes. All cytochromes transport electrons by converting the iron in the cytochromes from the \(+3\) to the \(+2\) oxidation state. Consider the following reduction potentials for three different cytochromes used in the transfer process of electrons to oxygen (the potentials have been corrected for \(\mathrm{pH}\) and for temperature): \(\begin{aligned} \text { cytochrome } \mathrm{a}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \longrightarrow \text { cytochrome } \mathrm{a}\left(\mathrm{Fe}^{2+}\right) & \\ \mathscr{B} &=0.385 \mathrm{~V} \\ \text { cytochrome } \mathrm{b}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \longrightarrow \text { cytochrome } \mathrm{b}\left(\mathrm{Fe}^{2+}\right) & \\ \mathscr{E} &=0.030 \mathrm{~V} \\ \text { cytochrome } \mathrm{c}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \longrightarrow \text { cytochrome } \mathrm{c}\left(\mathrm{Fe}^{2+}\right) & \\ \mathscr{Z} &=0.254 \mathrm{~V} \end{aligned}\) In the electron transfer series, electrons are transferred from one cytochrome to another. Using this information, determine the cytochrome order necessary for spontaneous transport of electrons from one cytochrome to another, which eventually will lead to electron transfer to \(\mathrm{O}_{2}\).

Balance the following oxidation-reduction reactions that occur in basic solution. a. \(\mathrm{Cr}(s)+\mathrm{CrO}_{4}^{2-}(a q) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(s)\) b. \(\mathrm{MnO}_{4}^{-}(a q)+\mathrm{S}^{2-}(a q) \rightarrow \mathrm{MnS}(s)+\mathrm{S}(s)\) c. \(\mathrm{CN}^{-}(a q)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{CNO}^{-}(a q)+\mathrm{MnO}_{2}(s)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free