Chapter 18: Problem 9
Explain why cell potentials are not multiplied by the coefficients in the balanced redox equation. (Use the relationship between \(\Delta G\) and cell potential to do this.)
Chapter 18: Problem 9
Explain why cell potentials are not multiplied by the coefficients in the balanced redox equation. (Use the relationship between \(\Delta G\) and cell potential to do this.)
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a cell based on the following half-reactions: $$\begin{aligned}\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Au} & \mathscr{C}^{\circ}=1.50 \mathrm{~V} \\ \mathrm{Fe}^{3+}+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+} & \mathscr{C}^{\circ}=0.77 \mathrm{~V} \end{aligned}$$ a. Draw this cell under standard conditions, labeling the anode, the cathode, the direction of electron flow, and the concentrations, as appropriate. b. When enough \(\mathrm{NaCl}(s)\) is added to the compartment containing gold to make the \(\left[\mathrm{Cl}^{-}\right]=0.10 M\), the cell potential is observed to be \(0.31 \mathrm{~V}\). Assume that \(\mathrm{Au}^{3+}\) is reduced and assume that the reaction in the compartment containing gold is $$\mathrm{Au}^{3+}(a q)+4 \mathrm{Cl}^{-}(a q) \rightleftharpoons \mathrm{AuCl}_{4}^{-}(a q)$$ Calculate the value of \(K\) for this reaction at \(25^{\circ} \mathrm{C}\).
Balance the following equations by the half-reaction method. a. \(\mathrm{Fe}(s)+\mathrm{HCl}(a q) \longrightarrow \mathrm{HFeCl}_{4}(a q)+\mathrm{H}_{2}(g)\) b. \(\mathrm{IO}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) \stackrel{\text { Acid }}{\longrightarrow} \mathbf{I}_{3}^{-}(a q)\) c. \(\begin{aligned} \mathrm{Cr}(\mathrm{NCS})_{6}^{4-}(a q)+\mathrm{Ce}^{4+}(a q) \stackrel{\mathrm{Acid}}{\longrightarrow} \\ & \mathrm{Cr}^{3+}(a q)+\mathrm{Ce}^{3+}(a q)+\mathrm{NO}_{3}^{-}(a q)+\mathrm{CO}_{2}(g)+\mathrm{SO}_{4}^{2-}(a q) \\ \text { d. } \mathrm{CrI}_{3}(s)+\mathrm{Cl}_{2}(g) \stackrel{\text { Base }}{\longrightarrow} \mathrm{CrO}_{4}^{2-}(a q)+\mathrm{IO}_{4}^{-}(a q)+\mathrm{Cl}^{-}(a q) \\ \text { e. } \mathrm{Fe}(\mathrm{CN})_{6}^{4-}(a q)+\mathrm{Ce}^{4+}(a q) \stackrel{\text { Base }}{\longrightarrow} \\\ \mathrm{Ce}(\mathrm{OH})_{3}(s)+\mathrm{Fe}(\mathrm{OH})_{3}(s)+\mathrm{CO}_{3}^{2-}(a q)+\mathrm{NO}_{3}^{-}(a q) \end{aligned}\)
What is electrochemistry? What are redox reactions? Explain the difference between a galvanic and an electrolytic cell.
When copper reacts with nitric acid, a mixture of \(\mathrm{NO}(\mathrm{g})\) and \(\mathrm{NO}_{2}(g)\) is evolved. The volume ratio of the two product gases depends on the concentration of the nitric acid according to the equilibrium \(2 \mathrm{H}^{+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)+\mathrm{NO}(g) \rightleftharpoons 3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)\) Consider the following standard reduction potentials at \(25^{\circ} \mathrm{C}\) : \(3 \mathrm{e}^{-}+4 \mathrm{H}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NO}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)\) $$\begin{array}{r}\mathscr{E}^{\circ}=0.957 \mathrm{~V}\end{array}$$ \(\mathrm{e}^{-}+2 \mathrm{H}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)\) $${8}^{\circ}=0.775 \mathrm{~V}$$ a. Calculate the equilibrium constant for the above reaction. b. What concentration of nitric acid will produce a NO and \(\mathrm{NO}_{2}\) mixture with only \(0.20 \% \mathrm{NO}_{2}\) (by moles) at \(25^{\circ} \mathrm{C}\) and \(1.00 \mathrm{~atm}\) ? Assume that no other gases are present and that the change in acid concentration can be neglected.
Aluminum is produced commercially by the electrolysis of \(\mathrm{Al}_{2} \mathrm{O}_{3}\) in the presence of a molten salt. If a plant has a continuous capacity of \(1.00\) million A, what mass of aluminum can be produced in \(2.00 \mathrm{~h} ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.