Draw all geometrical and linkage isomers of \(\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\).

Short Answer

Expert verified
The complex \(\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\) can have a total of four possible isomers: cis-NN, cis-NO, trans-NN, and trans-NO. These isomers arise from the different arrangements of the \(\mathrm{NH}_3\) and \(\mathrm{NO}_2\) ligands around the cobalt ion (cis and trans geometrical isomers) as well as the different ways the \(\mathrm{NO}_2\) ligand can bind to the cobalt ion (through either nitrogen or oxygen, leading to linkage isomers).

Step by step solution

01

Identifying possible geometrical isomers

In an octahedral complex with the general formula \(\mathrm{MA_4B_2}\), there are two possibilities for geometrical isomers: cis and trans arrangements. The cis isomer has the two B ligands adjacent to each other, whereas the trans isomer has the two B ligands opposite each other.
02

Drawing cis and trans isomers

Now, let's draw the cis and trans isomer of the complex \(\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\). Cis isomer: In this arrangement, the two \(\mathrm{NO}_2\) ligands are adjacent to each other. \( \require{AMScd} \begin{CD} \ @. \mathrm{NO}_2 @. \mathrm{NO}_2 \\ @. \ | \\ \mathrm{NH}_3 - \mathrm{Co} @{-}@ _{- \mathrm{NH}_3} \\ @. \ | \\ @. \mathrm{NH}_3 @. \mathrm{NH}_3 \end{CD} \) Trans isomer: In this arrangement, the two \(\mathrm{NO}_2\) ligands are opposite to each other. \( \require{AMScd} \begin{CD} \ @. \mathrm{NH}_3 @. \mathrm{NH}_3 \\ @. \ | \\ \mathrm{NO}_2 - \mathrm{Co} @{-}@ _{- \mathrm{NH}_3} \\ @. \ | \\ @. \mathrm{NH}_3 @. \mathrm{NO}_2 \end{CD} \)
03

Identifying possible linkage isomers

In the given complex, only the \(\mathrm{NO}_2\) ligand can exhibit linkage isomerism, as it can bind to the cobalt ion through either the nitrogen (N) or the oxygen (O) atom.
04

Drawing linkage isomers with \(\mathrm{NO}_2\) bonding through nitrogen and oxygen

Now, let's draw the linkage isomers for each geometrical isomer. Cis isomers: 1. Both \(\mathrm{NO}_2\) ligands bind through nitrogen (cis-NN isomer) 2. One \(\mathrm{NO}_2\) ligand binds through nitrogen, and the other binds through oxygen (cis-NO isomer) \( \require{AMScd} \begin{CD} \ @. \mathrm{N}<- \mathrm{O}_2 @. \mathrm{N}<- \mathrm{O}_2 \\ @. \ | \\ \mathrm{NH}_3 - \mathrm{Co} @{-}@ _{- \mathrm{NH}_3} \\ @. \ | \\ @. \mathrm{NH}_3 @. \mathrm{NH}_3 \end{CD} \qquad \require{AMScd} \begin{CD} \ @. \mathrm{N}<- \mathrm{O}_2 @. \mathrm{O}-> \mathrm{N}<- \mathrm{O} \\ @. \ | \\ \mathrm{NH}_3 - \mathrm{Co} @{-}@ _{- \mathrm{NH}_3} \\ @. \ | \\ @. \mathrm{NH}_3 @. \mathrm{NH}_3 \end{CD} \) Trans isomers: 1. Both \(\mathrm{NO}_2\) ligands bind through nitrogen (trans-NN isomer) 2. One \(\mathrm{NO}_2\) ligand binds through nitrogen, and the other binds through oxygen (trans-NO isomer) \( \require{AMScd} \begin{CD} \ @. \mathrm{NH}_3 @. \mathrm{NH}_3 \\ @. \ | \\ \mathrm{N}<- \mathrm{O}_2 - \mathrm{Co} @{-}@ _{- \mathrm{NH}_3} \\ @. \ | \\ @. \mathrm{NH}_3 @. \mathrm{N}<- \mathrm{O}_2 \end{CD} \qquad \require{AMScd} \begin{CD} \ @. \mathrm{NH}_3 @. \mathrm{NH}_3 \\ @. \ | \\ \mathrm{N}<- \mathrm{O}_2 - \mathrm{Co} @{-}@ _{- \mathrm{NH}_3} \\ @. \ | \\ @. \mathrm{NH}_3 @. \mathrm{O}-> \mathrm{N}<- \mathrm{O} \end{CD} \) In total, there are four possible isomers for the complex \(\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\): cis-NN, cis-NO, trans-NN, and trans-NO.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Would it be better to use octahedral \(\mathrm{Ni}^{2+}\) complexes or octahedral \(\mathrm{Cr}^{2+}\) complexes to determine whether a given ligand is a strong-field or weak-field ligand by measuring the number of unpaired electrons? How else could the relative ligand field strengths be determined?

Carbon monoxide is toxic because it binds more strongly to iron in hemoglobin (Hb) than does \(\mathrm{O}_{2}\). Consider the following reactions and approximate standard free energy changes: $$\begin{array}{cl}\mathrm{Hb}+\mathrm{O}_{2} \longrightarrow \mathrm{HbO}_{2} & \Delta G^{\circ}=-70 \mathrm{~kJ} \\ \mathrm{Hb}+\mathrm{CO} \longrightarrow \mathrm{HbCO} & \Delta G^{\circ}=-80 \mathrm{~kJ}\end{array}$$ Using these data, estimate the equilibrium constant value at \(25^{\circ} \mathrm{C}\) for the following reaction: $$\mathrm{HbO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{HbCO}+\mathrm{O}_{2}$$

Amino acids can act as ligands toward transition metal ions. The simplest amino acid is glycine \(\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)\). Draw a structure of the glycinate anion \(\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}\right)\) acting as a bidentate ligand. Draw the structural isomers of the square planar complex \(\mathrm{Cu}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{2}\)

Qualitatively draw the crystal field splitting of the \(d\) orbitals in a trigonal planar complex ion. (Let the \(z\) axis be perpendicular to the plane of the complex.)

Qualitatively draw the crystal field splitting for a trigonal bipyramidal complex ion. (Let the \(z\) axis be perpendicular to the trigonal plane.)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free