Balance each of the following chemical equations. a. \(\mathrm{KO}_{2}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{KOH}(a q)+\mathrm{O}_{2}(g)+\mathrm{H}_{2} \mathrm{O}_{2}(a q)\) b. \(\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+\mathrm{HNO}_{3}(a q) \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l)\) c. \(\mathrm{NH}_{3}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{NO}(g)+\mathrm{H}_{2} \mathrm{O}(g)\) d. \(\mathrm{PCl}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{HCl}(g)\) e. \(\mathrm{CaO}(s)+\mathrm{C}(s) \rightarrow \mathrm{CaC}_{2}(s)+\mathrm{CO}_{2}(g)\) f. \(\operatorname{MoS}_{2}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{MoO}_{3}(s)+\mathrm{SO}_{2}(g)\) g. \(\mathrm{FeCO}_{3}(s)+\mathrm{H}_{2} \mathrm{CO}_{3}(a q) \rightarrow \mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}(a q)\)

Short Answer

Expert verified
a. \(\mathrm{KO}_{2} + 2\mathrm{H}_{2}\mathrm{O} \rightarrow 2\mathrm{KOH} + \mathrm{O}_{2} + \mathrm{H}_{2}\mathrm{O}_{2}\) b. \(\mathrm{Fe}_{2}\mathrm{O}_{3} + 6\mathrm{HNO}_{3} \rightarrow 2\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} + 3\mathrm{H}_{2}\mathrm{O}\) c. \(4\mathrm{NH}_{3} + 5\mathrm{O}_{2} \rightarrow 4\mathrm{NO} + 6\mathrm{H}_{2}\mathrm{O}\) d. \(\mathrm{PCl}_{5} + 4\mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{H}_{3}\mathrm{PO}_{4} + 5\mathrm{HCl}\) e. \(\mathrm{CaO} + \mathrm{C} \rightarrow \mathrm{CaC}_{2} + \mathrm{CO}_{2}\) f. \(\mathrm{MoS}_{2} + 7\mathrm{O}_{2} \rightarrow 2\mathrm{MoO}_{3} + 2\mathrm{SO}_{2}\) g. \(\mathrm{FeCO}_{3} + \mathrm{H}_{2}\mathrm{CO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}\)

Step by step solution

01

Add coefficients to balance potassium on both sides

Start by adding a 2 in front of \(\mathrm{KOH}\): \(\mathrm{KO}_{2}+\mathrm{H}_{2}\mathrm{O} \rightarrow 2\mathrm{KOH}+\mathrm{O}_{2}+\mathrm{H}_{2}\mathrm{O}_{2}\)
02

Adjust coefficients to balance oxygen and hydrogen

Now, adjust the rest of the coefficients as such: \(\mathrm{KO}_{2}+2\mathrm{H}_{2}\mathrm{O} \rightarrow 2\mathrm{KOH}+\mathrm{O}_{2}+\mathrm{H}_{2}\mathrm{O}_{2}\) Now all atoms are balanced. b. Balancing iron(III) oxide (\(\mathrm{Fe}_{2}\mathrm{O}_{3}\)) reaction with nitric acid (\(\mathrm{HNO}_{3}\)):
03

Start by adding coefficients to balance iron and nitrate ions on both sides

Add a 2 in front of \(\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\) and a 6 in front of \(\mathrm{HNO}_{3}\): \(\mathrm{Fe}_{2}\mathrm{O}_{3}+6\mathrm{HNO}_{3} \rightarrow 2\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3\mathrm{H}_{2}\mathrm{O}\) Now, all atoms are balanced. c. Balancing ammonia (\(\mathrm{NH}_{3}\)) reaction with oxygen gas (\(\mathrm{O}_{2}\)):
04

Start by adding coefficients to balance nitrogen and hydrogen on both sides

Add a 4 in front of \(\mathrm{NH}_{3}\) and a 4 in front of \(\mathrm{NO}\): \(4\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow 4\mathrm{NO}+6\mathrm{H}_{2}\mathrm{O}\)
05

Adjust coefficients to balance oxygen

Finally, add a 5 in front of \(\mathrm{O}_{2}\): \(4\mathrm{NH}_{3}+5\mathrm{O}_{2} \rightarrow 4\mathrm{NO}+6\mathrm{H}_{2}\mathrm{O}\) Now all atoms are balanced. d. Balancing phosphorus pentachloride (\(\mathrm{PCl}_{5}\)) reaction with water (\(\mathrm{H}_{2}\mathrm{O}\)):
06

Start by adding coefficients to balance phosphorus and hydrogen on both sides

Add a 5 in front of \(\mathrm{HCl}\) and adjust the rest of the coefficients as such: \(\mathrm{PCl}_{5}+4\mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{H}_{3}\mathrm{PO}_{4}+5\mathrm{HCl}\) Now all atoms are balanced. e. Balancing calcium oxide (\(\mathrm{CaO}\)) reaction with carbon (\(\mathrm{C}\)):
07

No coefficients need to be added

\(\mathrm{CaO}+\mathrm{C} \rightarrow \mathrm{CaC}_{2}+\mathrm{CO}_{2}\) All atoms are already balanced. f. Balancing molybdenum disulfide (\(\mathrm{MoS}_{2}\)) reaction with oxygen gas (\(\mathrm{O}_{2}\)):
08

Start by adding coefficients to balance molybdenum and sulfur on both sides

Add a 2 in front of \(\mathrm{MoO}_{3}\) and a 2 in front of \(\mathrm{SO}_{2}\): \(\mathrm{MoS}_{2}+\mathrm{O}_{2} \rightarrow 2\mathrm{MoO}_{3}+2\mathrm{SO}_{2}\)
09

Adjust coefficients to balance oxygen

Now, add a 7 in front of \(\mathrm{O}_{2}\): \(\mathrm{MoS}_{2}+7\mathrm{O}_{2} \rightarrow 2\mathrm{MoO}_{3}+2\mathrm{SO}_{2}\) Now all atoms are balanced. g. Balancing iron(II) carbonate (\(\mathrm{FeCO}_{3}\)) reaction with carbonic acid (\(\mathrm{H}_{2}\mathrm{CO}_{3}\)):
10

No coefficients need to be added

\(\mathrm{FeCO}_{3}+\mathrm{H}_{2}\mathrm{CO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}\) All atoms are already balanced.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the following balanced chemical equation: $$ A+5 B \longrightarrow 3 C+4 D $$ a. Equal masses of \(\mathrm{A}\) and \(\mathrm{B}\) are reacted. Complete each of the following with either "A is the limiting reactant because \(" ;{ }^{\prime *} \mathrm{~B}\) is the limiting reactant because \("\) or "we cannot determine the limiting reactant because i. If the molar mass of \(\mathrm{A}\) is greater than the molar mass of B, then ii. If the molar mass of \(\mathrm{B}\) is greater than the molar mass of A, then b. The products of the reaction are carbon dioxide (C) and water (D). Compound \(\mathrm{A}\) has the same molar mass as carbon dioxide. Compound \(\mathrm{B}\) is a diatomic molecule. Identify \(\mathrm{com}-\) pound \(\mathrm{B}\) and support your answer. c. Compound \(\mathrm{A}\) is a hydrocarbon that is \(81.71 \%\) carbon by mass. Detemine its empirical and molecular formulas.

What amount (moles) is represented by each of these samples? a. \(150.0 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}\) b. \(10.0 \mathrm{mg} \mathrm{NO}_{2}\) c. \(1.5 \times 10^{16}\) molecules of \(\mathrm{BF}_{3}\)

The compound \(\mathrm{As}_{2} \mathrm{I}_{4}\) is synthesized by reaction of arsenic metal with arsenic triiodide. If a solid cubic block of arsenic \((d=5.72\) \(\mathrm{g} / \mathrm{cm}^{3}\) ) that is \(3.00 \mathrm{~cm}\) on edge is allowed to react with \(1.01 \times 10^{24}\) molecules of arsenic triiodide, what mass of \(\mathrm{As}_{2} \mathrm{I}_{4}\) can be prepared? If the percent yield of \(\mathrm{As}_{2} \mathrm{I}_{4}\) was \(75.6 \%\), what mass of \(\mathrm{As}_{2} \mathrm{I}_{4}\) was actually isolated?

Boron consists of two isotopes, \({ }^{10} \mathrm{~B}\) and \({ }^{11} \mathrm{~B}\). Chlorine also has two isotopes, \({ }^{35} \mathrm{Cl}\) and \({ }^{37} \mathrm{Cl}\). Consider the mass spectrum of \(\mathrm{BCl}_{3}\). How many peaks would be present, and what approximate mass would each peak correspond to in the \(\mathrm{BCl}_{3}\) mass spectrum?

In using a mass spectrometer, a chemist sees a peak at a mass of \(30.0106\). Of the choices \({ }^{12} \mathrm{C}_{2}{ }^{1} \mathrm{H}_{6},{ }^{12} \mathrm{C}^{1} \mathrm{H}_{2}{ }^{16} \mathrm{O}\), and \({ }^{14} \mathrm{~N}^{16} \mathrm{O}\), which is responsible for this peak? Pertinent masses are \({ }^{1} \mathrm{H}, 1.007825\); \({ }^{16} \mathrm{O}, 15.994915 ;\) and \({ }^{14} \mathrm{~N}, 14.003074 .\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free