Given the following data \(\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{CO}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{CO}_{2}(g) \quad \Delta H^{\circ}=-23 \mathrm{~kJ}\) \(3 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+\mathrm{CO}(g) \longrightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+\mathrm{CO}_{2}(g) \quad \Delta H^{\circ}=-39 \mathrm{~kJ}\) \(\mathrm{Fe}_{3} \mathrm{O}_{4}(s)+\mathrm{CO}(g) \longrightarrow 3 \mathrm{FeO}(s)+\mathrm{CO}_{2}(g) \quad \Delta H^{\circ}=+18 \mathrm{~kJ}\) calculate \(\Delta H^{\circ}\) for the reaction $$ \mathrm{FeO}(s)+\mathrm{CO}(g) \longrightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g) $$

Short Answer

Expert verified
The enthalpy change, ΔH, for the given reaction $$ \mathrm{FeO}(s)+\mathrm{CO}(g) \longrightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g) $$ is approximately -25.67 kJ.

Step by step solution

01

Identify the common species in the reactions

Observe that CO is a reactant in all the given reactions and CO₂ is a product in all the given reactions.
02

Calculate the moles of the target reaction

The goal is to manipulate the given reactions to match the target reaction. So the target reaction is: $$ \mathrm{FeO}(s)+\mathrm{CO}(g) \longrightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g) $$
03

Manipulate the given reactions

In order for the target reaction to be obtained, multiply the first given reaction by \(\frac{1}{3}\) and reverse the last given reaction.
04

Writing the modified reactions and their enthalpy changes

The modified reactions are: $$ \frac{1}{3}(\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{CO}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{CO}_{2}(g)) \quad \Delta H^{\circ}=-\frac{1}{3} \times 23 \, \mathrm{kJ}=-\frac{23}{3} \, \mathrm{kJ} $$ $$ \mathrm{FeO}(s)+\mathrm{CO}(g) \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+\mathrm{CO}_{2}(g) \quad \Delta H^{\circ}=-18 \, \mathrm{kJ} $$ Notice that when we reverse the third given reaction, its enthalpy change becomes negative. Now add the first modified reaction and the second modified reaction together to get the target reaction.
05

Combine the modified reactions and find the ΔH for the target reaction

Summing both modified reactions, we get the target reaction: $$ \mathrm{FeO}(s)+\mathrm{CO}(g) \longrightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g) $$ Now, according to Hess's law, the enthalpy change for the target reaction is equal to the sum of the enthalpy changes for the modified reactions: $$ \Delta H^{\circ}_{\text{target}}=\Delta H^{\circ}_{1}+\Delta H^{\circ}_{2}= -\frac{23}{3} \, \mathrm{kJ} - 18 \, \mathrm{kJ} $$ Calculate the final enthalpy change for the target reaction: $$ \Delta H^{\circ}_{\text{target}}=-\frac{23}{3} \, \mathrm{kJ} - 18 \, \mathrm{kJ} = -\frac{77}{3} \, \mathrm{kJ} $$
06

Final answer

The enthalpy change, ΔH, for the given reaction $$ \mathrm{FeO}(s)+\mathrm{CO}(g) \longrightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g) $$ is -25.67 kJ (approximately).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is incomplete combustion of fossil fuels? Why can this be a problem?

The combustion of \(0.1584 \mathrm{~g}\) benzoic acid increases the temperature of a bomb calorimeter by \(2.54^{\circ} \mathrm{C}\). Calculate the heat capacity of this calorimeter. (The energy released by combustion of benzoic acid is \(26.42 \mathrm{~kJ} / \mathrm{g} .\) ) A \(0.2130-\mathrm{g}\) sample of vanillin \(\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}\right)\) is then burned in the same calorimeter, and the temperature increases by \(3.25^{\circ} \mathrm{C}\). What is the energy of combustion per gram of vanillin? Per mole of vanillin?

Given the following data $$ \begin{array}{ll} \mathrm{NH}_{3}(g) \longrightarrow \frac{1}{2} \mathrm{~N}_{2}(g)+\frac{3}{2} \mathrm{H}_{2}(g) & \Delta H=46 \mathrm{~kJ} \\ 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(g) & \Delta H=-484 \mathrm{~kJ} \end{array} $$ calculate \(\Delta H\) for the reaction $$ 2 \mathrm{~N}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) \longrightarrow 3 \mathrm{O}_{2}(g)+4 \mathrm{NH}_{3}(g) $$ On the basis of the enthalpy change, is this a useful reaction for the synthesis of ammonia?

Which has the greater kinetic energy, an object with a mass of 2.0 \(\mathrm{kg}\) and a velocity of \(1.0 \mathrm{~m} / \mathrm{s}\) or an object with a mass of \(1.0 \mathrm{~kg}\) and a velocity of \(2.0 \mathrm{~m} / \mathrm{s}\) ?

Assuming gasoline is pure \(\mathrm{C}_{8} \mathrm{H}_{1 \mathrm{~s}}(l)\), predict the signs of \(q\) and \(w\) for the process of combusting gasoline into \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) .\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free