Chapter 6: Problem 27
A gas absorbs \(45 \mathrm{~kJ}\) of heat and does \(29 \mathrm{~kJ}\) of work. Calculate \(\Delta E\).
Chapter 6: Problem 27
A gas absorbs \(45 \mathrm{~kJ}\) of heat and does \(29 \mathrm{~kJ}\) of work. Calculate \(\Delta E\).
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate \(\Delta H^{\circ}\) for each of the following reactions using the data in Appendix 4: $$ \begin{array}{c} 4 \mathrm{Na}(s)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{Na}_{2} \mathrm{O}(s) \\ 2 \mathrm{Na}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow 2 \mathrm{NaOH}(a q)+\mathrm{H}_{2}(g) \\ 2 \mathrm{Na}(s)+\mathrm{CO}_{2}(g) \longrightarrow \mathrm{Na}_{2} \mathrm{O}(s)+\mathrm{CO}(\mathrm{g}) \end{array} $$ Explain why a water or carbon dioxide fire extinguisher might not be effective in putting out a sodium fire.
Consider an airplane trip from Chicago, Illinois, to Denver, Colorado. List some path-dependent functions and some state functions for the plane trip.
The enthalpy change for the reaction $$ \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ is \(-891 \mathrm{~kJ}\) for the reaction as written. a. What quantity of heat is released for each mole of water formed? b. What quantity of heat is released for each mole of oxygen reacted?
Given the following data $$ \begin{aligned} 2 \mathrm{ClF}(g)+\mathrm{O}_{2}(g) & \longrightarrow \mathrm{Cl}_{2} \mathrm{O}(g)+\mathrm{F}_{2} \mathrm{O}(g) & \Delta H &=167.4 \mathrm{~kJ} \\ 2 \mathrm{ClF}_{3}(g)+2 \mathrm{O}_{2}(g) & \longrightarrow \mathrm{Cl}_{2} \mathrm{O}(g)+3 \mathrm{~F}_{2} \mathrm{O}(g) & \Delta H &=341.4 \mathrm{~kJ} \\\ 2 \mathrm{~F}_{2}(g)+\mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{~F}_{2} \mathrm{O}(g) & \Delta H &=-43.4 \mathrm{~kJ} \end{aligned} $$ calculate \(\Delta H\) for the reaction $$ \mathrm{ClF}(g)+\mathrm{F}_{2}(g) \longrightarrow \mathrm{ClF}_{3}(g) $$
One mole of \(\mathrm{H}_{2} \mathrm{O}(g)\) at \(1.00 \mathrm{~atm}\) and \(100 .^{\circ} \mathrm{C}\) occupies a volume of \(30.6 \mathrm{~L}\). When one mole of \(\mathrm{H}_{2} \mathrm{O}(g)\) is condensed to one mole of \(\mathrm{H}_{2} \mathrm{O}(l)\) at \(1.00 \mathrm{~atm}\) and \(100 .{ }^{\circ} \mathrm{C}, 40.66 \mathrm{~kJ}\) of heat is released. If the density of \(\mathrm{H}_{2} \mathrm{O}(l)\) at this temperature and pressure is \(0.996 \mathrm{~g} / \mathrm{cm}^{3}\), calculate \(\Delta E\) for the condensation of one mole of water at \(1.00 \mathrm{~atm}\) and \(100 .{ }^{\circ} \mathrm{C}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.