Given the following data $$ \begin{aligned} 2 \mathrm{ClF}(g)+\mathrm{O}_{2}(g) & \longrightarrow \mathrm{Cl}_{2} \mathrm{O}(g)+\mathrm{F}_{2} \mathrm{O}(g) & \Delta H &=167.4 \mathrm{~kJ} \\ 2 \mathrm{ClF}_{3}(g)+2 \mathrm{O}_{2}(g) & \longrightarrow \mathrm{Cl}_{2} \mathrm{O}(g)+3 \mathrm{~F}_{2} \mathrm{O}(g) & \Delta H &=341.4 \mathrm{~kJ} \\\ 2 \mathrm{~F}_{2}(g)+\mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{~F}_{2} \mathrm{O}(g) & \Delta H &=-43.4 \mathrm{~kJ} \end{aligned} $$ calculate \(\Delta H\) for the reaction $$ \mathrm{ClF}(g)+\mathrm{F}_{2}(g) \longrightarrow \mathrm{ClF}_{3}(g) $$

Short Answer

Expert verified
The enthalpy change, \(\Delta H\), for the reaction $$ \mathrm{ClF}(g)+\mathrm{F}_{2}(g) \longrightarrow \mathrm{ClF}_{3}(g) $$ is -189.1 kJ.

Step by step solution

01

Identify which reactions will be used to form the desired reaction.

First, we need to determine which reactions we need to combine to get the desired reaction: $$ \mathrm{ClF}(g)+\mathrm{F}_{2}(g) \longrightarrow \mathrm{ClF}_{3}(g) $$ From the given reactions, we know that the above reaction is a combination of the first and third reaction.
02

Adjust the reactions to match the desired reaction coefficients.

We will manipulate the first and third reactions so that they can be added together to create the desired reaction equation. In this case, we will reverse the first reaction and divide the third reaction by 2. This will give us the correct stoichiometric coefficients for our target reaction. Reversed first reaction: $$ \mathrm{Cl}_{2}\mathrm{O}(g)+\mathrm{F}_{2}\mathrm{O}(g) \longrightarrow 2 \mathrm{ClF}(g)+\mathrm{O}_{2}(g) $$ and the new enthalpy is $$ \Delta H_{1}' = -167.4 \mathrm{~kJ} $$ Divide the third reaction by 2: $$ \mathrm{F}_{2}(g)+\frac{1}{2}\mathrm{O}_{2}(g) \longrightarrow \mathrm{F}_{2}\mathrm{O}(g) $$ and the new enthalpy is $$ \Delta H_{3}' = -\frac{43.4}{2} \mathrm{~kJ} = -21.7 \mathrm{~kJ} $$
03

Add the adjusted reactions and their enthalpy changes.

Now we will add the adjusted reactions from Step 2 to form the desired reaction, and add the corresponding enthalpies to find the enthalpy for the desired reaction. Add the adjusted reactions: $$ (\mathrm{Cl}_{2}\mathrm{O}(g)+\mathrm{F}_{2}\mathrm{O}(g) \longrightarrow 2\mathrm{ClF}(g)+\mathrm{O}_{2}(g)) + (\mathrm{F}_{2}(g)+\frac{1}{2}\mathrm{O}_{2}(g) \longrightarrow \mathrm{F}_{2}\mathrm{O}(g)) $$ This simplifies to $$ \mathrm{ClF}(g)+\mathrm{F}_{2}(g) \longrightarrow \mathrm{ClF}_{3}(g) $$ Add the adjusted enthalpy changes: $$ \Delta H = \Delta H_{1}' + \Delta H_{3}' = -167.4 \mathrm{~kJ} - 21.7 \mathrm{~kJ} = -189.1 \mathrm{~kJ} $$
04

Write the answer.

The enthalpy change, \(\Delta H\), for the reaction $$ \mathrm{ClF}(g)+\mathrm{F}_{2}(g) \longrightarrow \mathrm{ClF}_{3}(g) $$ is -189.1 kJ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

It takes \(585 \mathrm{~J}\) of energy to raise the temperature of \(125.6 \mathrm{~g}\) mercury from \(20.0^{\circ} \mathrm{C}\) to \(53.5^{\circ} \mathrm{C}\). Calculate the specific heat capacity and the molar heat capacity of mercury.

Consider \(2.00 \mathrm{~mol}\) of an ideal gas that is taken from state \(A\left(P_{A}=\right.\) \(\left.2.00 \mathrm{~atm}, V_{A}=10.0 \mathrm{~L}\right)\) to state \(B\left(P_{B}=1.00 \mathrm{~atm}, V_{B}=30.0 \mathrm{~L}\right)\) by two different pathways: Calculate the work (in units of J) associated with the two pathways. Is work a state function? Explain.

The complete combustion of acetylene, \(\mathrm{C}_{2} \mathrm{H}_{2}(g)\), produces 1300\. kJ of energy per mole of acetylene consumed. How many grams of acetylene must be burned to produce enough heat to raise the temperature of \(1.00\) gal water by \(10.0^{\circ} \mathrm{C}\) if the process is \(80.0 \%\) efficient? Assume the density of water is \(1.00 \mathrm{~g} / \mathrm{cm}^{3}\)

Given the following data $$ \begin{aligned} \mathrm{Ca}(s)+2 \mathrm{C}(\text { graphite }) & \longrightarrow \mathrm{CaC}_{2}(s) & \Delta H &=-62.8 \mathrm{~kJ} \\ \mathrm{Ca}(s)+\frac{1}{2} \mathrm{O}_{2}(g) & \longrightarrow \mathrm{CaO}(s) & \Delta H &=-635.5 \mathrm{~kJ} \\ \mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(l) & \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(a q) & \Delta H &=-653.1 \mathrm{~kJ} \\ \mathrm{C}_{2} \mathrm{H}_{2}(g)+\frac{5}{2} \mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) & \Delta H &=-1300 . \mathrm{kJ} \\ \mathrm{C}(\text { graphite })+\mathrm{O}_{2}(g) & \Delta H &=-393.5 \mathrm{~kJ} \end{aligned} $$ calculate \(\Delta H\) for the reaction $$ \mathrm{CaC}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(a q)+\mathrm{C}_{2} \mathrm{H}_{2}(g) $$

At \(298 \mathrm{~K}\), the standard enthalpies of formation for \(\mathrm{C}_{2} \mathrm{H}_{2}(g)\) and \(\mathrm{C}_{6} \mathrm{H}_{6}(l)\) are \(227 \mathrm{~kJ} / \mathrm{mol}\) and \(49 \mathrm{~kJ} / \mathrm{mol}\), respectively. a. Calculate \(\Delta H^{\circ}\) for $$ \mathrm{C}_{6} \mathrm{H}_{6}(l) \longrightarrow 3 \mathrm{C}_{2} \mathrm{H}_{2}(g) $$ b. Both acetylene \(\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\) and benzene \(\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\) can be used as fuels. Which compound would liberate more energy per gram when combusted in air?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free