Use the following data to estimate \(\Delta H_{\mathrm{f}}^{\circ}\) for potassium chloride. $$ \mathrm{K}(s)+\frac{1}{2} \mathrm{Cl}_{2}(g) \longrightarrow \mathrm{KCl}(s) $$ $$ \begin{array}{lr} \text { Lattice energy } & -690 . \mathrm{kJ} / \mathrm{mol} \\ \text { Ionization energy for } \mathrm{K} & 419 \mathrm{~kJ} / \mathrm{mol} \\\ \text { Electron affinity of Cl } & -349 \mathrm{~kJ} / \mathrm{mol} \\ \text { Bond energy of } \mathrm{Cl}_{2} & 239 \mathrm{~kJ} / \mathrm{mol} \\ \text { Enthalpy of sublimation for } \mathrm{K} & 64 \mathrm{~kJ} / \mathrm{mol} \end{array} $$

Short Answer

Expert verified
The estimated standard enthalpy of formation for potassium chloride is \(-443 \,\mathrm{kJ/mol}\).

Step by step solution

01

Write down the given data

We start by writing the given data in their respective symbols: - Lattice energy: \(U_{\mathrm{lattice}} = -690 \,\mathrm{kJ/mol}\) - Ionization energy of K: \(IE_{\mathrm{K}} = 419 \,\mathrm{kJ/mol}\) - Electron affinity of Cl: \(EA_{\mathrm{Cl}} = -349 \,\mathrm{kJ/mol}\) - Bond energy of Cl: \(BE_{\mathrm{Cl_2}} = 239 \,\mathrm{kJ/mol}\) - Enthalpy of sublimation for K: \(\Delta H_{\mathrm{sub}}^{\mathrm{K}} = 64 \,\mathrm{kJ/mol}\)
02

Apply Hess's Law

Using Hess's Law, we can determine the enthalpy change for the formation of KCl from its constituent elements by adding up the individual energy changes: $$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{KCl}) = \Delta H_{\mathrm{sub}}^{\mathrm{K}} + \frac{1}{2} \cdot BE_{\mathrm{Cl_2}} + IE_{\mathrm{K}} + EA_{\mathrm{Cl}} + U_{\mathrm{lattice}}$$
03

Calculate the enthalpy change

Now, we can plug in the given values for each term into the equation from step 2: $$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{KCl}) = 64\,\mathrm{kJ/mol} + \frac{1}{2} \cdot 239\,\mathrm{kJ/mol} + 419\,\mathrm{kJ/mol} - 349\,\mathrm{kJ/mol} - 690\,\mathrm{kJ/mol}$$
04

Solve for the enthalpy of formation

Simplifying the equation, we get: $$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{KCl}) = 64 + \frac{1}{2} \cdot 239 + 419 - 349 - 690$$ Calculating the value, we find: $$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{KCl}) = -443\,\mathrm{kJ/mol}$$ So, the estimated standard enthalpy of formation for potassium chloride is \(-443 \,\mathrm{kJ/mol}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Without using Fig. \(8.3\), predict which bond in each of the following groups will be the most polar. a. \(\mathrm{C}-\mathrm{H}, \mathrm{Si}-\mathrm{H}, \mathrm{Sn}-\mathrm{H}\) b. \(\mathrm{Al}-\mathrm{Br}, \mathrm{Ga}-\mathrm{Br}, \mathrm{In}-\mathrm{Br}, \mathrm{Tl}-\mathrm{Br}\) c. \(\mathrm{C}-\mathrm{O}\) or \(\mathrm{Si}-\mathrm{O}\) d. \(\mathrm{O}-\mathrm{F}\) or \(\mathrm{O}-\mathrm{Cl}\)

Some of the important properties of ionic compounds are as follows: i. low electrical conductivity as solids and high conductivity in solution or when molten ii. relatively high melting and boiling points iii. brittleness iv. solubility in polar solvents How does the concept of ionic bonding discussed in this chapter account for these properties?

Which of the following molecules have net dipole moments? For the molecules that are polar, indicate the polarity of each bond and the direction of the net dipole moment of the molecule. a. \(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}, \mathrm{CCl}_{4}\) b. \(\mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}\) c. \(\mathrm{PH}_{3}, \mathrm{NH}_{3}\)

Rationalize the following lattice energy values: $$ \begin{array}{|lc|} \hline & \text { Lattice Energy } \\ \text { Compound } & (\mathrm{kJ} / \mathrm{mol}) \\ \hline \mathrm{CaSe} & -2862 \\ \mathrm{Na}_{2} \mathrm{Se} & -2130 \\ \mathrm{CaTe} & -2721 \\ \mathrm{Na}_{2} \mathrm{Te} & -2095 \\ \hline \end{array} $$

Place the species below in order of the shortest to the longest nitrogen- oxygen bond. \(\begin{array}{lllll}\mathrm{H}_{2} \mathrm{NOH}, & \mathrm{N}_{2} \mathrm{O}, & \mathrm{NO}^{+}, & \mathrm{NO}_{2}^{-}, & \mathrm{NO}_{3}^{-}\end{array}\) \(\left(\mathrm{H}_{2} \mathrm{NOH}\right.\) exists as \(\mathrm{H}_{2} \mathrm{~N}-\mathrm{OH} .\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free