For the reaction $$ 2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) $$ it is determined that, at equilibrium at a particular temperature, the concentrations are as follows: \([\mathrm{NO}(g)]=8.1 \times 10^{-3}\) \(M,\left[\mathrm{H}_{2}(g)\right]=4.1 \times 10^{-5} M,\left[\mathrm{~N}_{2}(g)\right]=5.3 \times 10^{-2} M\), and \(\left[\mathrm{H}_{2} \mathrm{O}(g)\right]=2.9 \times 10^{-3} M .\) Calculate the value of \(K\) for the reaction at this temperature.

Short Answer

Expert verified
The value of the equilibrium constant (K) for the reaction at this temperature is approximately \(4.04 \times 10^{6}\).

Step by step solution

01

Identify the given concentrations

We are given the equilibrium concentrations for each substance as follows: $$[\text{NO}] = 8.1 \times 10^{-3}\,M$$ $$[\text{H}_2] = 4.1 \times 10^{-5}\,M$$ $$[\text{N}_2] = 5.3 \times 10^{-2}\,M$$ $$[\text{H}_2\text{O}] = 2.9 \times 10^{-3}\,M$$
02

Apply the equilibrium constant formula

Now we will use the formula for the equilibrium constant (K) and plug in the given concentrations: $$K = \frac{[\text{N}_2][\text{H}_2\text{O}]^2}{[\text{NO}]^2[\text{H}_2]^2}$$
03

Substitute the given concentrations

Replace the substance concentrations with their given values: $$K = \frac{(5.3 \times 10^{-2})(2.9 \times 10^{-3})^2}{(8.1 \times 10^{-3})^2(4.1 \times 10^{-5})^2}$$
04

Calculate the equilibrium constant (K)

Perform the calculations to find the value of K: $$K = \frac{(5.3 \times 10^{-2})(8.41 \times 10^{-6})}{(6.561 \times 10^{-5})(1.681 \times 10^{-9})}$$ $$K = \frac{4.4553 \times 10^{-7}}{1.10261 \times 10^{-13}}$$ $$K \approx 4.04 \times 10^{6}$$ The value of the equilibrium constant (K) for the reaction at this temperature is approximately \(4.04 \times 10^{6}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write expressions for \(K_{\mathrm{p}}\) for the following reactions. a. \(2 \mathrm{Fe}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{Fe}_{2} \mathrm{O}_{3}(s)\) b. \(\mathrm{CO}_{2}(g)+\mathrm{MgO}(s) \rightleftharpoons \mathrm{MgCO}_{3}(s)\) c. \(\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{H}_{2}(g)\) d. \(4 \mathrm{KO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 4 \mathrm{KOH}(s)+3 \mathrm{O}_{2}(g)\)

Write the equilibrium expression ( \(K\) ) for each of the following gas-phase reactions. a. \(\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)\) b. \(\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)\) c. \(\mathrm{SiH}_{4}(g)+2 \mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{SiCl}_{4}(g)+2 \mathrm{H}_{2}(g)\) d. \(2 \mathrm{PBr}_{3}(g)+3 \mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{PCl}_{3}(g)+3 \mathrm{Br}_{2}(g)\)

At a particular temperature, \(12.0\) moles of \(\mathrm{SO}_{3}\) is placed into a 3.0-L rigid container, and the \(\mathrm{SO}_{3}\) dissociates by the reaction $$ 2 \mathrm{SO}_{3}(g) \rightleftharpoons 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) $$ At equilibrium, \(3.0\) moles of \(\mathrm{SO}_{2}\) is present. Calculate \(K\) for this reaction.

At a particular temperature a \(2.00-\mathrm{L}\) flask at equilibrium contains \(2.80 \times 10^{-4}\) mole of \(\mathrm{N}_{2}, 2.50 \times 10^{-5}\) mole of \(\mathrm{O}_{2}\), and \(2.00 \times 10^{-2}\) mole of \(\mathrm{N}_{2} \mathrm{O}\). Calculate \(K\) at this temperature for the reaction $$ 2 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}(g) $$ If \(\left[\mathrm{N}_{2}\right]=2.00 \times 10^{-4} M,\left[\mathrm{~N}_{2} \mathrm{O}\right]=0.200 M\), and \(\left[\underline{ \left.\mathrm{O}_{2}\right]}=\right.\) \(0.00245 M\), does this represent a system at equilibrium?

Consider the following reaction: $$ \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g) $$ Amounts of \(\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{H}_{2}\), and \(\mathrm{CO}_{2}\) are put into \(\underline{\mathrm{a}}\) flask so that the composition corresponds to an equilibrium position. If the CO placed in the flask is labeled with radioactive \({ }^{14} \mathrm{C}\), will \({ }^{14} \mathrm{C}\) be found only in CO molecules for an indefinite period of time? Explain.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free