Arsenic acid \(\left(\mathrm{H}_{3} \mathrm{AsO}_{4}\right)\) is a triprotic acid with \(K_{\mathrm{a}_{1}}=5.5 \times\) \(10^{-3}, K_{\mathrm{a}_{2}}=1.7 \times 10^{-7}\), and \(K_{\mathrm{a}_{3}}=5.1 \times 10^{-12}\). Calculate \(\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}_{3} \mathrm{AsO}_{4}\right],\left[\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}\right],\left[\mathrm{HAsO}_{4}^{2-}\right]\), and \(\left[\mathrm{AsO}_{4}{ }^{3-}\right]\) in a \(0.20-M\) arsenic acid solution.

Short Answer

Expert verified
In a 0.20 M arsenic acid solution, the concentrations of various species are: \[[H^{+}] \approx 0.033 \text{ M}\] \[[OH^{-}] \approx 3.03 \times 10^{-14} \text{ M}\] \[[H_{3}AsO_{4}] \approx 0.167 \text{ M}\] \[[H_{2}AsO_{4}^{-}] \approx 0.033 \text{ M}\] \[[HAsO_{4}^{2-}] \approx 1.7 \times 10^{-7} \text{ M}\] \[[AsO_{4}^{3-}]\approx 2.6 \times 10^{-12} \text{ M}\]

Step by step solution

01

Write the Dissociation Equations for each proton

The dissociation of each proton from arsenic acid can be described by three separate chemical reactions: 1) \[H_{3}AsO_{4} \rightleftharpoons H^{+} + H_{2}AsO_{4}^{-}\] 2) \[H_{2}AsO_{4}^{-} \rightleftharpoons H^{+} + HAsO_{4}^{2-}\] 3) \[HAsO_{4}^{2-} \rightleftharpoons H^{+} + AsO_{4}^{3-}\] We have been given the dissociation constant for each of these reactions: \[K_{a1} = 5.5 \times 10^{-3}\] \[K_{a2} = 1.7 \times 10^{-7}\] \[K_{a3} = 5.1 \times 10^{-12}\]
02

Calculate the concentration of H⁺ ions

Since \(K_{a1} \gg K_{a2} \gg K_{a3}\), most of the H⁺ ions will come from the dissociation of the first proton (Reaction 1). Therefore, we treat H₃AsO₄ as a weak monoprotic acid and find the concentration of H⁺ ions using the formula: \[[H^+] = \sqrt{K_{a1} \times [\text{H}_{3}\text{AsO}_{4}]}\] Given, the concentration of arsenic acid is 0.20 M. Thus, \[[H^{+}] = \sqrt{(5.5 \times 10^{-3}) \times 0.20} \approx 0.033 \text{ M}\]
03

Calculate the concentrations of the other species

With the concentration of H⁺ ions, we can now find the concentrations of the other species in the solution. For the first dissociation reaction: \[\frac{[H^+][H_{2}AsO_{4}^{-}]}{[H_{3}AsO_{4}]}=K_{a1}\] \[[H_{2}AsO_{4}^{-}] = \frac{K_{a1} [H_{3}AsO_{4}]}{[H^+]}\] \[[H_{2}AsO_{4}^{-}] = \frac{(5.5\times10^{-3})(0.20)}{0.033}\approx0.033 \text{ M}\] For the second dissociation reaction: \[\frac{[H^+][HAsO_{4}^{2-}]}{[H_{2}AsO_{4}^{-}]}=K_{a2}\] \[[HAsO_{4}^{2-}] = \frac{K_{a2} [H_{2}AsO_{4}^{-}]}{[H^+]}\] \[[HAsO_{4}^{2-}] = \frac{(1.7\times10^{-7})(0.033)}{0.033}\approx1.7 \times 10^{-7} \text{ M}\] For the third dissociation reaction: \[\frac{[H^+][AsO_{4}^{3-}]}{[HAsO_{4}^{2-}]}=K_{a3}\] \[[AsO_{4}^{3-}] = \frac{K_{a3} [HAsO_{4}^{2-}]}{[H^+]}\] \[[AsO_{4}^{3-}] = \frac{(5.1\times10^{-12})(1.7\times10^{-7})}{0.033}\approx 2.6 \times 10^{-12} \text{ M}\] Finally, we find the concentration of OH⁻ ions to satisfy the equation \([H^{+}][OH^{-}] = K_{w}\), where \(K_w = 1.0 \times 10^{-14}\) is the ion product of water. \[[OH^{-}] = \frac{K_{w}}{[H^{+}]}\] \[[OH^{-}] = \frac{1.0 \times 10^{-14}}{0.033} \approx 3.03 \times 10^{-14} \text{ M}\]
04

Results

The concentrations of all species in the 0.20 M arsenic acid solution are: \[[H^{+}] \approx 0.033 \text{ M}\] \[[OH^{-}] \approx 3.03 \times 10^{-14} \text{ M}\] \[[H_{3}AsO_{4}] \approx 0.20 - 0.033 \approx 0.167 \text{ M}\] \[[H_{2}AsO_{4}^{-}] \approx 0.033 \text{ M}\] \[[HAsO_{4}^{2-}] \approx 1.7 \times 10^{-7} \text{ M}\] \[[AsO_{4}^{3-}]\approx 2.6 \times 10^{-12} \text{ M}\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free