Chapter 14: Problem 22
Why is \(\mathrm{H}_{3} \mathrm{O}^{+}\) the strongest acid and \(\mathrm{OH}^{-}\) the strongest base that can exist in significant amounts in aqueous solutions?
Chapter 14: Problem 22
Why is \(\mathrm{H}_{3} \mathrm{O}^{+}\) the strongest acid and \(\mathrm{OH}^{-}\) the strongest base that can exist in significant amounts in aqueous solutions?
All the tools & learning materials you need for study success - in one app.
Get started for freeAcrylic acid \(\left(\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{H}\right)\) is a precursor for many important plastics. \(K_{\mathrm{a}}\) for acrylic acid is \(5.6 \times 10^{-5}\) a. Calculate the \(\mathrm{pH}\) of a \(0.10-M\) solution of acrylic acid. b. Calculate the percent dissociation of a \(0.10-M\) solution of acrylic acid. c. Calculate the \(\mathrm{pH}\) of a \(0.050-M\) solution of sodium acrylate \(\left(\mathrm{NaC}_{3} \mathrm{H}_{3} \mathrm{O}_{2}\right)\)
Identify the Lewis acid and the Lewis base in each of the following reactions. a. \(\mathrm{Fe}^{3+}(a q)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}(a q)\) b. \(\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{HCN}(a q)+\mathrm{OH}^{-}(a q)\) c. \(\mathrm{HgI}_{2}(s)+2 \mathrm{I}^{-}(a q) \rightleftharpoons \mathrm{HgI}_{4}{ }^{2-}(a q)\)
Consider a \(0.67-M\) solution of \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\left(K_{\mathrm{b}}=5.6 \times 10^{-4}\right)\). a. Which of the following are major species in the solution? i. \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\) ii. \(\mathrm{H}^{+}\) iii. \(\mathrm{OH}^{-}\) iv. \(\mathrm{H}_{2} \mathrm{O}\) v. \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\) b. Calculate the \(\mathrm{pH}\) of this solution.
The equilibrium constant \(K_{\mathrm{a}}\) for the reaction \(\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons{\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)}\) is \(6.0 \times 10^{-3}\). a. Calculate the \(\mathrm{pH}\) of a \(0.10-M\) solution of \(\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\). b. Will a \(1.0-M\) solution of iron(II) nitrate have a higher or lower \(\mathrm{pH}\) than a \(1.0-M\) solution of iron(III) nitrate? Explain.
Calculate \(\left[\mathrm{CO}_{3}^{2-}\right]\) in a \(0.010-M\) solution of \(\mathrm{CO}_{2}\) in water (usually written as \(\mathrm{H}_{2} \mathrm{CO}_{3}\) ). If all the \(\mathrm{CO}_{3}{ }^{2-}\) in this solution comes from the reaction $$\mathrm{HCO}_{3}^{-}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{CO}_{3}^{2-}(a q)$$ what percentage of the \(\mathrm{H}^{+}\) ions in the solution is a result of the dissociation of \(\mathrm{HCO}_{3}^{-} ?\) When acid is added to a solution of sodium hydrogen carbonate \(\left(\mathrm{NaHCO}_{3}\right)\), vigorous bubbling occurs. How is this reaction related to the existence of carbonic acid \(\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)\) molecules in aqueous solution?
What do you think about this solution?
We value your feedback to improve our textbook solutions.