For each of the following aqueous reactions, identify the acid, the base, the conjugate base, and the conjugate acid. a. \(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}\) b. \(\mathrm{H}_{2} \mathrm{O}+\mathrm{HONH}_{3}^{+} \rightleftharpoons \mathrm{HONH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+}\) c. \(\mathrm{HOCl}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \rightleftharpoons \mathrm{OCl}^{-}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\)

Short Answer

Expert verified
For each reaction: a. Acid: \(\mathrm{Al}(\mathrm{H}_{2}\mathrm{O})_{6}^{3+}\); Base: \(\mathrm{H}_{2}\mathrm{O}\); Conjugate Acid: \(\mathrm{H}_{3}\mathrm{O}^{+}\); Conjugate Base: \(\mathrm{Al}(\mathrm{H}_{2}\mathrm{O})_{5}(\mathrm{OH})^{2+}\) b. Acid: \(\mathrm{HONH}_{3}^{+}\); Base: \(\mathrm{H}_{2}\mathrm{O}\); Conjugate Acid: \(\mathrm{H}_{3}\mathrm{O}^{+}\); Conjugate Base: \(\mathrm{HONH}_{2}\) c. Acid: \(\mathrm{HOCl}\); Base: \(\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{NH}_{2}\); Conjugate Acid: \(\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{NH}_{3}^{+}\); Conjugate Base: \(\mathrm{OCl}^{-}\)

Step by step solution

01

In the given reaction, \(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\) donates a proton (H+) to \(\mathrm{H}_{2} \mathrm{O}\). Therefore, the acid is \(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\). #Step 2: Identify the base#

In the given reaction, \(\mathrm{H}_{2}\mathrm{O}\) accepts a proton (H+) from \(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\). Therefore, the base is \(\mathrm{H}_{2}\mathrm{O}\). #Step 3: Identify the conjugate acid#
02

In the given reaction, \(\mathrm{H}_{2}\mathrm{O}\) gains a proton (H+) and forms \(\mathrm{H}_{3}\mathrm{O}^{+}\). Therefore, the conjugate acid is \(\mathrm{H}_{3}\mathrm{O}^{+}\). #Step 4: Identify the conjugate base#

In the given reaction, \(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\) loses a proton (H+) and forms \(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}\). Therefore, the conjugate base is \(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}\). b. \(\mathrm{H}_{2} \mathrm{O}+\mathrm{HONH}_{3}^{+} \rightleftharpoons \mathrm{HONH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+}\) #Step 1: Identify the acid#
03

In the given reaction, \(\mathrm{HONH}_{3}^{+}\) donates a proton (H+) to \(\mathrm{H}_{2}\mathrm{O}\). Therefore, the acid is \(\mathrm{HONH}_{3}^{+}\). #Step 2: Identify the base#

In the given reaction, \(\mathrm{H}_{2}\mathrm{O}\) accepts a proton (H+) from \(\mathrm{HONH}_{3}^{+}\). Therefore, the base is \(\mathrm{H}_{2}\mathrm{O}\). #Step 3: Identify the conjugate acid#
04

In the given reaction, \(\mathrm{H}_{2}\mathrm{O}\) gains a proton (H+) and forms \(\mathrm{H}_{3}\mathrm{O}^{+}\). Therefore, the conjugate acid is \(\mathrm{H}_{3}\mathrm{O}^{+}\). #Step 4: Identify the conjugate base#

In the given reaction, \(\mathrm{HONH}_{3}^{+}\) loses a proton (H+) and forms \(\mathrm{HONH}_{2}\). Therefore, the conjugate base is \(\mathrm{HONH}_{2}\). c. \(\mathrm{HOCl}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \rightleftharpoons \mathrm{OCl}^{-}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\) #Step 1: Identify the acid#
05

In the given reaction, \(\mathrm{HOCl}\) donates a proton (H+) to \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\). Therefore, the acid is \(\mathrm{HOCl}\). #Step 2: Identify the base#

In the given reaction, \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\) accepts a proton (H+) from \(\mathrm{HOCl}\). Therefore, the base is \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\). #Step 3: Identify the conjugate acid#
06

In the given reaction, \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\) gains a proton (H+) and forms \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\). Therefore, the conjugate acid is \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\). #Step 4: Identify the conjugate base#

In the given reaction, \(\mathrm{HOCl}\) loses a proton (H+) and forms \(\mathrm{OCl}^{-}\). Therefore, the conjugate base is \(\mathrm{OCl}^{-}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Identify the Lewis acid and the Lewis base in each of the following reactions. a. \(\mathrm{B}(\mathrm{OH})_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{B}(\mathrm{OH})_{4}^{-}(a q)+\mathrm{H}^{+}(a q)\) b. \(\mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}(a q)\) c. \(\mathrm{BF}_{3}(g)+\mathrm{F}^{-}(a q) \rightleftharpoons \mathrm{BF}_{4}^{-}(a q)\)

What mass of \(\mathrm{NaOH}(s)\) must be added to \(1.0 \mathrm{~L}\) of \(0.050 \mathrm{M}\) \(\mathrm{NH}_{3}\) to ensure that the percent ionization of \(\mathrm{NH}_{3}\) is no greater than \(0.0010 \%\) ? Assume no volume change on addition of \(\mathrm{NaOH}\)

A solution is made by adding \(50.0 \mathrm{~mL}\) of \(0.200 M\) acetic acid \(\left(K_{\mathrm{a}}=1.8 \times 10^{-5}\right)\) to \(50.0 \mathrm{~mL}\) of \(1.00 \times 10^{-3} \mathrm{M} \mathrm{HCl}\) a. Calculate the \(\mathrm{pH}\) of the solution. b. Calculate the acetate ion concentration.

A sample containing \(0.0500\) mole of \(\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\) is dissolved in enough water to make \(1.00 \mathrm{~L}\) of solution. This solution contains hydrated \(\mathrm{SO}_{4}{ }^{2-}\) and \(\mathrm{Fe}^{3+}\) ions. The latter behaves as an acid: $$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}(a q) \rightleftharpoons \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}(a q)+\mathrm{H}^{+}(a q)$$ a. Calculate the expected osmotic pressure of this solution at \(25^{\circ} \mathrm{C}\) if the above dissociation is negligible. b. The actual osmotic pressure of the solution is \(6.73\) atm at \(25^{\circ} \mathrm{C}\). Calculate \(K_{\mathrm{a}}\) for the dissociation reaction of \(\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}\). (To do this calculation, you must assume that none of the ions go through the semipermeable membrane. Actually, this is not a great assumption for the tiny \(\mathrm{H}^{+}\) ion.)

What are the major species present in the following mixtures of bases? a. \(0.050 \mathrm{M} \mathrm{NaOH}\) and \(0.050 \mathrm{M} \mathrm{LiOH}\) b. \(0.0010 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}\) and \(0.020 \mathrm{M} \mathrm{RbOH}\) What is \(\left[\mathrm{OH}^{-}\right]\) and the \(\mathrm{pH}\) of each of these solutions?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free