a. Calculate the \(\mathrm{pH}\) of a buffered solution that is \(0.100
\mathrm{M}\) in \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\)
(benzoic acid, \(K_{\mathrm{a}}=6.4 \times 10^{-5}\) ) and \(0.100 \mathrm{M}\)
in \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{Na}\).
b. Calculate the \(\mathrm{pH}\) after \(20.0 \%\) (by moles) of the benzoic acid
is converted to benzoate anion by addition of a strong base. Use the
dissociation equilibrium
$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}(a q)
\rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}(a
q)+\mathrm{H}^{+}(a q)
$$
to calculate the \(\mathrm{pH}\).
c. Do the same as in part b, but use the following equilibrium to calculate
the \(\mathrm{pH}\) :
\(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}(a q)+\mathrm{H}_{2}
\mathrm{O}(l) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}
\mathrm{H}(a q)+\mathrm{OH}^{-}(a q)\)
d. Do your answers in parts \(\mathrm{b}\) and \(\mathrm{c}\) agree? Explain.