Calculate the solubility of each of the following compounds in moles per liter. Ignore any acid-base properties. a. \(\mathrm{Ag}_{3} \mathrm{PO}_{4}, K_{\mathrm{sp}}=1.8 \times 10^{-18}\) b. \(\mathrm{CaCO}_{3}, K_{\mathrm{sp}}=8.7 \times 10^{-9}\) c. \(\mathrm{Hg}_{2} \mathrm{Cl}_{2}, K_{\mathrm{sp}}=1.1 \times 10^{-18}\left(\mathrm{Hg}_{2}^{2+}\right.\) is the cation in solution.)

Short Answer

Expert verified
The solubilities of the given compounds are as follows: a. The solubility of Ag3PO4 is \(1.91 \times 10^{-6}\,moles/L\). b. The solubility of CaCO3 is \(9.35 \times 10^{-5}\,moles/L\). c. The solubility of Hg2Cl2 is \(2.96 \times 10^{-6}\,moles/L\).

Step by step solution

01

a. Calculate the solubility of Ag3PO4

Step 1: Write the balanced dissolution equation and the Ksp expression The balanced equation for the dissolution of Ag3PO4 is: \[ Ag_3PO_4(s) \rightleftharpoons 3Ag^+(aq) + PO_4^{3-}(aq) \] The expression for the solubility product constant (Ksp) is: \[ K_{sp} = [Ag^+]^3[PO_4^{3-}] \] Step 2: Set up the equilibrium table Let s be the solubility of Ag3PO4 in moles per liter. The equilibrium table for the dissolution of Ag3PO4 is: | | Initial | Change | Equilibrium | | Ag3PO4 (s) | - | - | - | | Ag+ (aq) | 0 | +3s | 3s | | PO4^3- (aq) | 0 | +s | s | Step 3: Solve for solubility (s) Substitute the equilibrium concentrations into the Ksp expression: \[1.8 \times 10^{-18} = (3s)^3(s)\] Solve for s: \[s = 1.91 \times 10^{-6}\,M\] The solubility of Ag3PO4 is \(1.91 \times 10^{-6}\,moles/L\).
02

b. Calculate the solubility of CaCO3

Step 1: Write the balanced dissolution equation and the Ksp expression The balanced equation for the dissolution of CaCO3 is: \[ CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq) \] The expression for the solubility product constant (Ksp) is: \[ K_{sp} = [Ca^{2+}][CO_3^{2-}] \] Step 2: Set up the equilibrium table Let s be the solubility of CaCO3 in moles per liter. The equilibrium table for the dissolution of CaCO3 is: | | Initial | Change | Equilibrium | | CaCO3 (s) | - | - | - | | Ca^2+ (aq) | 0 | +s | s | | CO3^2- (aq) | 0 | +s | s | Step 3: Solve for solubility (s) Substitute the equilibrium concentrations into the Ksp expression: \[8.7 \times 10^{-9} = (s)(s)\] Solve for s: \[s = 9.35 \times 10^{-5}\,M\] The solubility of CaCO3 is \(9.35 \times 10^{-5}\,moles/L\).
03

c. Calculate the solubility of Hg2Cl2

Step 1: Write the balanced dissolution equation and the Ksp expression The balanced equation for the dissolution of Hg2Cl2 is: \[ Hg_2Cl_2(s) \rightleftharpoons Hg_2^{2+}(aq) + 2Cl^-(aq) \] The expression for the solubility product constant (Ksp) is: \[ K_{sp} = [Hg_2^{2+}][Cl^-]^2 \] Step 2: Set up the equilibrium table Let s be the solubility of Hg2Cl2 in moles per liter. The equilibrium table for the dissolution of Hg2Cl2 is: | | Initial | Change | Equilibrium | | Hg2Cl2 (s) | - | - | - | | Hg2^2+ (aq) | 0 | +s | s | | Cl^- (aq) | 0 | +2s | 2s | Step 3: Solve for solubility (s) Substitute the equilibrium concentrations into the Ksp expression: \[1.1 \times 10^{-18} = (s)(2s)^2\] Solve for s: \[s = 2.96 \times 10^{-6}\,M\] The solubility of Hg2Cl2 is \(2.96 \times 10^{-6}\,moles/L\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For each of the following pairs of solids, determine which solid has the smallest molar solubility. a. \(\mathrm{CaF}_{2}(s), K_{\mathrm{sp}}=4.0 \times 10^{-11}\), or \(\mathrm{BaF}_{2}(s), K_{\mathrm{sp}}=2.4 \times 10^{-5}\) b. \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s), K_{\mathrm{sp}}=1.3 \times 10^{-32}\), or \(\mathrm{FePO}_{4}(s)\) \(K_{\text {? }}=1.0 \times 10^{-22}\)

The solubility of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\) in a \(0.10-M \mathrm{KIO}_{3}\) solution is \(2.6 \times 10^{-11} \mathrm{~mol} / \mathrm{L}\). Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s) .\)

For each of the following pairs of solids, determine which solid has the smallest molar solubility. a. \(\mathrm{FeC}_{2} \mathrm{O}_{4}, K_{\mathrm{sp}}=2.1 \times 10^{-7}\), or \(\mathrm{Cu}\left(\mathrm{IO}_{4}\right)_{2}, K_{<\rho}=1.4 \times 10^{-7}\) b. \(\mathrm{Ag}_{2} \mathrm{CO}_{3}, K_{\text {s }}=8.1 \times 10^{-12}\), or \(\mathrm{Mn}(\mathrm{OH})_{2}\), \(K_{\text {sp }}=2 \times 10^{-13}\)

A solution is \(1 \times 10^{-4} M\) in \(\mathrm{NaF}, \mathrm{Na}_{2} \mathrm{~S}\), and \(\mathrm{Na}_{3} \mathrm{PO}_{4}\). What would be the order of precipitation as a source of \(\mathrm{Pb}^{2+}\) is added gradually to the solution? The relevant \(K_{\text {spp }}\) values are \(K_{\text {sp }}\left(\mathrm{PbF}_{2}\right)\) \(=4 \times 10^{-8}, K_{\mathrm{sp}}(\mathrm{PbS})=7 \times 10^{-29}\), and \(K_{\mathrm{sp}}\left[\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right]=\) \(1 \times 10^{-34}\)

What mass of \(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\) must be added to \(1.0 \mathrm{~L}\) of a \(1.0-M \mathrm{HF}\) solution to begin precipitation of \(\mathrm{CaF}_{2}(s) ?\) For \(\mathrm{CaF}_{2}, K_{\mathrm{sp}}=\) \(4.0 \times 10^{-11}\) and \(K_{u}\) for \(\mathrm{HF}=7.2 \times 10^{-4} .\) Assume no volume change on addition of \(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(s)\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free