Chapter 16: Problem 31
Calculate the molar solubility of \(\mathrm{Mg}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=8.9 \times 10^{-12}\)
Chapter 16: Problem 31
Calculate the molar solubility of \(\mathrm{Mg}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=8.9 \times 10^{-12}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a solution made by mixing \(500.0 \mathrm{~mL}\) of \(4.0 \mathrm{M} \mathrm{NH}_{3}\) and \(500.0 \mathrm{~mL}\) of \(0.40 \mathrm{M} \mathrm{AgNO}_{3} \cdot \mathrm{Ag}^{+}\) reacts with \(\mathrm{NH}_{3}\) to form \(\begin{aligned} \mathrm{AgNH}_{3}{ }^{+} \text {and } \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}+: \\ \mathrm{Ag}^{+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{AgNH}_{3}{ }^{+}(a q) & K_{1}=2.1 \times 10^{3} \\ \mathrm{AgNH}_{3}^{+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}(a q) & K_{2}=8.2 \times 10^{3} \end{aligned}\) Determine the concentration of all species in solution.
The overall formation constant for \(\mathrm{HgI}_{4}{ }^{2-}\) is \(1.0 \times 10^{30} .\) That is, $$ 1.0 \times 10^{30}=\frac{\left[\mathrm{HgI}_{4}{ }^{2-}\right]}{\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]^{4}} $$ What is the concentration of \(\mathrm{Hg}^{2+}\) in \(500.0 \mathrm{~mL}\) of a solution that was originally \(0.010 \mathrm{M} \mathrm{Hg}^{2+}\) and \(0.78 \mathrm{M} \mathrm{I}^{-}\) ? The reaction is $$ \mathrm{Hg}^{2+}(a q)+4 \mathrm{I}^{-}(a q) \rightleftharpoons \mathrm{HgI}_{4}^{2-}(a q) $$
Calculate the molar solubility of \(\mathrm{Cd}(\mathrm{OH})_{2}, K_{\text {sp }}=5.9 \times 10^{-11}\).
When \(\mathrm{Na}_{3} \mathrm{PO}_{4}(a q)\) is added to a solution containing a metal ion and a precipitate forms, the precipitate generally could be one of two possibilities. What are the two possibilities?
The active ingredient of Pepto-Bismol is the compound bismuth subsalicylate, which undergoes the following dissociation when added to water: \(\begin{aligned} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BiO}_{4}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}{ }^{2-}(a q) \\\ &+\mathrm{Bi}^{3+}(a q)+\mathrm{OH}^{-}(a q) \quad K=? \end{aligned}\) If the maximum amount of bismuth subsalicylate that reacts by this reaction is \(3.2 \times 10^{-19} \mathrm{~mol} / \mathrm{L}\), calculate the equilibrium constant for the preceding reaction.
What do you think about this solution?
We value your feedback to improve our textbook solutions.