The solubility of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\) in a \(0.10-M \mathrm{KIO}_{3}\) solution is \(2.6 \times 10^{-11} \mathrm{~mol} / \mathrm{L}\). Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s) .\)

Short Answer

Expert verified
The solubility product constant, \(K_{sp}\), for \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\) is approximately \(6.76 \times 10^{-23}\).

Step by step solution

01

Write down the balanced chemical equation and the expression for \(K_{sp}\)

First, let's write down the balanced chemical equation for the dissociation of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}\) when it dissolves in water: \[\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s) \rightleftharpoons \mathrm{Pb}^{2+}(aq) + 2\mathrm{IO}_{3}^{-}(aq)\] Now, let's write the \(K_{sp}\) expression: \[K_{sp} = [\mathrm{Pb}^{2+}][\mathrm{IO}_{3}^{-}]^2\]
02

Determine the concentrations of ions at equilibrium

The given solubility of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}\) is \(2.6 \times 10^{-11}\,\mathrm{mol}/\mathrm{L}\). From the balanced chemical equation, we can see that for every mole of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}\) that dissolves in solution, it produces 1 mole of \(\mathrm{Pb}^{2+}\) and 2 moles of \(\mathrm{IO}_3^-\) ions. Denote the solubility of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}\) as \(s\), then at equilibrium, the concentrations of the dissociated ions are: \[[\mathrm{Pb}^{2+}] = s = 2.6 \times 10^{-11}\,\mathrm{M}\] \[[\mathrm{IO}_{3}^{-}] = 2s + [\mathrm{KIO}_{3}]\] Since the initial concentration of \(\mathrm{KIO}_{3}\) is given as \(0.10\,\mathrm{M}\), we have: \[[\mathrm{IO}_{3}^{-}] = 2(2.6 \times 10^{-11}) + 0.10 = 0.100000052\,\mathrm{M}\]
03

Compute the value of \(K_{sp}\)

Now that we have the equilibrium concentrations of \(\mathrm{Pb}^{2+}\) and \(\mathrm{IO}_{3}^{-}\), we can substitute these values into the \(K_{sp}\) expression: \[K_{sp} = [\mathrm{Pb}^{2+}][\mathrm{IO}_{3}^{-}]^2 = (2.6 \times 10^{-11})(0.100000052)^2\] Calculate the value of \(K_{sp}\): \[K_{sp} \approx 6.76 \times 10^{-23}\]
04

Report the final answer

The solubility product constant, \(K_{sp}\), for \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\) is approximately \(6.76 \times 10^{-23}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(K_{f}\) for the complex ion \(\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\) is \(1.7 \times 10^{7} . K_{\mathrm{sp}}\) for \(\mathrm{AgCl}\) is \(1.6 \times 10^{-10}\). Calculate the molar solubility of \(\mathrm{AgCl}\) in \(1.0 \mathrm{M}\) \(\mathrm{NH}_{3} .\)

Tooth enamel is composed of the mineral hydroxyapatite. The \(K_{\text {sp }}\) of hydroxyapatite, \(\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}\), is \(6.8 \times 10^{-37} .\) Calculate the solubility of hydroxyapatite in pure water in moles per liter. How is the solubility of hydroxyapatite affected by adding acid? When hydroxyapatite is treated with fluoride, the mineral fluorapatite, \(\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}\), forms. The \(K_{\mathrm{sp}}\) of this substance is \(1 \times 10^{-60}\). Calculate the solubility of fluorapatite in water. How do these calculations provide a rationale for the fluoridation of drinking water?

Calculate the solubility of solid \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(K_{\mathrm{sp}}=1.3 \times 10^{-32}\right)\) in a \(0.20-M \mathrm{Na}_{3} \mathrm{PO}_{4}\) solution.

A solution is prepared by mixing \(100.0 \mathrm{~mL}\) of \(1.0 \times 10^{-4} M\) \(\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}\) and \(100.0 \mathrm{~mL}\) of \(8.0 \mathrm{M} \mathrm{NaF}\). $$ \begin{aligned} \mathrm{Be}^{2+}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}^{+}(a q) & & K_{1}=7.9 \times 10^{4} \\ \mathrm{BeF}^{+}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}_{2}(a q) & & K_{2}=5.8 \times 10^{3} \\ \mathrm{BeF}_{2}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}_{3}-(a q) & & K_{3}=6.1 \times 10^{2} \\ \mathrm{BeF}_{3}^{-}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}_{4}{ }^{2-}(a q) & & K_{4}=2.7 \times 10^{1} \end{aligned} $$ Calculate the equilibrium concentrations of \(\mathrm{F}^{-}, \mathrm{Be}^{2+}, \mathrm{BeF}^{+}\), \(\mathrm{BeF}_{2}, \mathrm{BeF}_{3}^{-}\), and \(\mathrm{BeF}_{4}{ }^{2-}\) in this solution.

Write balanced equations for the dissolution reactions and the corresponding solubility product expressions for each of the following solids. a. \(\mathrm{Ag}_{2} \mathrm{CO}_{3}\) b. \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}\) c. \(\mathrm{BaF}_{2}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free