A solution is prepared by mixing \(100.0 \mathrm{~mL}\) of \(1.0 \times 10^{-4}
M\) \(\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}\) and \(100.0 \mathrm{~mL}\) of
\(8.0 \mathrm{M} \mathrm{NaF}\).
$$
\begin{aligned}
\mathrm{Be}^{2+}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons
\mathrm{BeF}^{+}(a q) & & K_{1}=7.9 \times 10^{4} \\
\mathrm{BeF}^{+}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons
\mathrm{BeF}_{2}(a q) & & K_{2}=5.8 \times 10^{3} \\
\mathrm{BeF}_{2}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons
\mathrm{BeF}_{3}-(a q) & & K_{3}=6.1 \times 10^{2} \\
\mathrm{BeF}_{3}^{-}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons
\mathrm{BeF}_{4}{ }^{2-}(a q) & & K_{4}=2.7 \times 10^{1}
\end{aligned}
$$
Calculate the equilibrium concentrations of \(\mathrm{F}^{-}, \mathrm{Be}^{2+},
\mathrm{BeF}^{+}\), \(\mathrm{BeF}_{2}, \mathrm{BeF}_{3}^{-}\), and
\(\mathrm{BeF}_{4}{ }^{2-}\) in this solution.