Calculate the final concentrations of \(\mathrm{K}^{+}(a q), \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q)\), \(\mathrm{Ba}^{2+}(a q)\), and \(\mathrm{Br}^{-}(a q)\) in a solution prepared by adding \(0.100 \mathrm{~L}\) of \(0.200 \mathrm{M} \mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) to \(0.150 \mathrm{~L}\) of \(0.250 \mathrm{M} \mathrm{BaBr}_{2}\). (For \(\left.\mathrm{BaC}_{2} \mathrm{O}_{4}, K_{\mathrm{sp}}=2.3 \times 10^{-\mathrm{s}} .\right)\)

Short Answer

Expert verified
The final concentrations in the solution are approximately: \(\mathrm{K}^{+}(a q) \approx 0.160 \mathrm{M}\), \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q) \approx 0.080 \mathrm{M}\), \(\mathrm{Ba}^{2+}(a q) \approx 0.150 \mathrm{M}\), and \(\mathrm{Br}^{-}(a q) \approx 0.300 \mathrm{M}\).

Step by step solution

01

Calculate the initial moles of solute in each solution

We will find the moles of solute in each solution by multiplying their molarity with the volume of the solution: Moles of \(\mathrm{K}_{2}\mathrm{C}_{2}\mathrm{O}_{4}\): \(0.200 \mathrm{M} \times 0.100 \mathrm{~L} = 0.020 \mathrm{mol}\) Moles of \(\mathrm{BaBr}_{2}\): \(0.250 \mathrm{M} \times 0.150 \mathrm{~L} = 0.0375 \mathrm{mol}\)
02

Find the initial moles of each ion in the combined solution

Next, we will find the initial moles of each ion in the combined solution: Moles of \(\mathrm{K}^{+} = 2 \times\) moles of \(\mathrm{K}_{2}\mathrm{C}_{2}\mathrm{O}_{4} = 2 \times 0.020 \mathrm{mol} = 0.040 \mathrm{mol}\) Moles of \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} = 0.020 \mathrm{mol}\) Moles of \(\mathrm{Ba}^{2+} = 0.0375 \mathrm{mol}\) Moles of \(\mathrm{Br}^{-} = 2 \times\) moles of \(\mathrm{BaBr}_{2} = 2 \times 0.0375 \mathrm{mol} = 0.075 \mathrm{mol}\)
03

Calculate the total volume of the combined solution

The final volume of the combined solution will be the sum of individual solution volumes: Total volume \(= 0.100 \mathrm{~L} + 0.150 \mathrm{~L} = 0.250 \mathrm{~L}\)
04

Calculate the initial concentration of each ion in the combined solution

Using the total volume and moles calculated above, we can find the initial concentration of each ion: \([\mathrm{K}^{+}] = \frac{0.040 \mathrm{mol}}{0.250 \mathrm{~L}} = 0.160 \mathrm{M}\) \([\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}] = \frac{0.020 \mathrm{mol}}{0.250 \mathrm{~L}} = 0.080 \mathrm{M}\) \([\mathrm{Ba}^{2+}] = \frac{0.0375 \mathrm{mol}}{0.250 \mathrm{~L}} = 0.150 \mathrm{M}\) \([\mathrm{Br}^{-}] = \frac{0.075 \mathrm{mol}}{0.250 \mathrm{~L}} = 0.300 \mathrm{M}\)
05

Calculate the equilibrium concentrations using solubility product constant (\(K_{sp}\)) for \(\mathrm{BaC}_{2} \mathrm{O}_{4}\)

Since we are given the value of \(K_{sp}\) for \(\mathrm{BaC}_{2}\mathrm{O}_{4}\) (\(K_{sp} = 2.3 \times 10^{-s}\)), we can use this equation: \(K_{sp} = [\mathrm{Ba}^{2+}][\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}]^2\) Now, we substitute the given value of \(K_{sp}\) and the initial concentrations we found in the previous steps: \(2.3 \times 10^{-s} = (0.150 - x)(0.080 - x)^2\) The above equation can be solved to find the value of \(x\). Although this equation may appear to be a quadratic, the value of Ksp is so small compared to the initial concentrations that the change in concentration (\(x\)) will be negligible. Therefore, the final concentrations, taking into account the solubility equilibrium, will be approximately equal to the initial concentrations: Final concentrations : \(\mathrm{K}^{+}(a q) \approx 0.160 \mathrm{M}\) \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q) \approx 0.080 \mathrm{M}\) \(\mathrm{Ba}^{2+}(a q) \approx 0.150 \mathrm{M}\) \(\mathrm{Br}^{-}(a q) \approx 0.300 \mathrm{M}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A solution contains \(1.0 \times 10^{-5} \mathrm{MAg}^{+}\) and \(2.0 \times 10^{-6} \mathrm{M} \mathrm{CN}^{-}\). Will \(\mathrm{AgCN}(s)\) precipitate? \(\left(K_{\text {sp }}\right.\) for \(\mathrm{AgCN}(s)\) is \(2.2 \times 10^{-12}\).)

A solution is prepared by mixing \(100.0 \mathrm{~mL}\) of \(1.0 \times 10^{-4} M\) \(\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}\) and \(100.0 \mathrm{~mL}\) of \(8.0 \mathrm{M} \mathrm{NaF}\). $$ \begin{aligned} \mathrm{Be}^{2+}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}^{+}(a q) & & K_{1}=7.9 \times 10^{4} \\ \mathrm{BeF}^{+}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}_{2}(a q) & & K_{2}=5.8 \times 10^{3} \\ \mathrm{BeF}_{2}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}_{3}-(a q) & & K_{3}=6.1 \times 10^{2} \\ \mathrm{BeF}_{3}^{-}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}_{4}{ }^{2-}(a q) & & K_{4}=2.7 \times 10^{1} \end{aligned} $$ Calculate the equilibrium concentrations of \(\mathrm{F}^{-}, \mathrm{Be}^{2+}, \mathrm{BeF}^{+}\), \(\mathrm{BeF}_{2}, \mathrm{BeF}_{3}^{-}\), and \(\mathrm{BeF}_{4}{ }^{2-}\) in this solution.

In the presence of \(\mathrm{NH}_{3}, \mathrm{Cu}^{2+}\) forms the complex ion \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\). If the equilibrium concentrations of \(\mathrm{Cu}^{2+}\) and \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) are \(1.8 \times 10^{-17} M\) and \(1.0 \times 10^{-3} \mathrm{M}\), respec- tively, in a \(1.5-M \mathrm{NH}_{3}\) solution, calculate the value for the overall formation constant of \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\). \(\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K_{\text {overall }}=?\)

The \(K_{\text {? }}\) for \(\mathrm{PbI}_{2}(s)\) is \(1.4 \times 10^{-8} .\) Calculate the solubility of \(\mathrm{PbI}_{2}(s)\) in \(0.048 M\) NaI.

Which is more likely to dissolve in an acidic solution, silver sulfide or silver chloride? Why?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free