Write equations for the stepwise formation of each of the following complex ions. a. \(\mathrm{CoF}_{6}^{3-}\) b. \(\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\)

Short Answer

Expert verified
The stepwise formation of the complex ions can be summarized as follows: a. Formation of \(\mathrm{CoF}_{6}^{3-}\) complex ion: 1. \(\mathrm{Co^{3+}} + \mathrm{F^{-}} \rightarrow \mathrm{CoF^{2+}}\) 2. \(\mathrm{CoF^{2+}} + 2\,\mathrm{F^{-}} \rightarrow \mathrm{CoF_3^{+}}\) 3. \(\mathrm{CoF_3^{+}} + 3\,\mathrm{F^{-}} \rightarrow \mathrm{CoF_{6}^{3-}}\) b. Formation of \(\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) complex ion: 1. \(\mathrm{Zn^{2+}} + \mathrm{NH_3} \rightarrow \mathrm{Zn(NH_3)^{2+}}\) 2. \(\mathrm{Zn(NH_3)^{2+}} + 2\,\mathrm{NH_3} \rightarrow \mathrm{Zn(NH_3)_3^{2+}}\) 3. \(\mathrm{Zn(NH_3)_3^{2+}} + \mathrm{NH_3} \rightarrow \mathrm{Zn(NH_3)_4^{2+}}\)

Step by step solution

01

Formation of first coordination site

Add one \(\mathrm{F^{-}}\) ion to the \(\mathrm{Co^{3+}}\) ion to form a monodentate complex: \[ \mathrm{Co^{3+}} + \mathrm{F^{-}} \rightarrow \mathrm{CoF^{2+}} \]
02

Formation of second and third coordination sites

Add two more \(\mathrm{F^{-}}\) ions to the complex formed in step 1: \[ \mathrm{CoF^{2+}} + 2\,\mathrm{F^{-}} \rightarrow \mathrm{CoF_3^{+}} \]
03

Formation of final complex ion

Finally, add the remaining three \(\mathrm{F^{-}}\) ions to the complex formed in step 2: \[ \mathrm{CoF_3^{+}} + 3\,\mathrm{F^{-}} \rightarrow \mathrm{CoF_{6}^{3-}} \] b. Formation of \(\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) complex ion:
04

Formation of first coordination site

Add one \(\mathrm{NH_3}\) molecule to the \(\mathrm{Zn^{2+}}\) ion to form a monodentate complex: \[ \mathrm{Zn^{2+}} + \mathrm{NH_3} \rightarrow \mathrm{Zn(NH_3)^{2+}} \]
05

Formation of second and third coordination sites

Add two more \(\mathrm{NH_3}\) molecules to the complex formed in step 1: \[ \mathrm{Zn(NH_3)^{2+}} + 2\,\mathrm{NH_3} \rightarrow \mathrm{Zn(NH_3)_3^{2+}} \]
06

Formation of final complex ion

Finally, add the last \(\mathrm{NH_3}\) molecule to the complex formed in step 2: \[ \mathrm{Zn(NH_3)_3^{2+}} + \mathrm{NH_3} \rightarrow \mathrm{Zn(NH_3)_4^{2+}} \]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A solution is prepared by mixing \(100.0 \mathrm{~mL}\) of \(1.0 \times 10^{-4} M\) \(\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}\) and \(100.0 \mathrm{~mL}\) of \(8.0 \mathrm{M} \mathrm{NaF}\). $$ \begin{aligned} \mathrm{Be}^{2+}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}^{+}(a q) & & K_{1}=7.9 \times 10^{4} \\ \mathrm{BeF}^{+}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}_{2}(a q) & & K_{2}=5.8 \times 10^{3} \\ \mathrm{BeF}_{2}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}_{3}-(a q) & & K_{3}=6.1 \times 10^{2} \\ \mathrm{BeF}_{3}^{-}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}_{4}{ }^{2-}(a q) & & K_{4}=2.7 \times 10^{1} \end{aligned} $$ Calculate the equilibrium concentrations of \(\mathrm{F}^{-}, \mathrm{Be}^{2+}, \mathrm{BeF}^{+}\), \(\mathrm{BeF}_{2}, \mathrm{BeF}_{3}^{-}\), and \(\mathrm{BeF}_{4}{ }^{2-}\) in this solution.

For which salt in each of the following groups will the solubility depend on \(\mathrm{pH}\) ? a. \(\mathrm{AgF}, \mathrm{AgCl}, \mathrm{AgBr}\) c. \(\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Sr}\left(\mathrm{NO}_{2}\right)_{2}\) b. \(\mathrm{Pb}(\mathrm{OH})_{2}, \mathrm{PbCl}_{2}\) d. \(\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Ni}(\mathrm{CN})_{2}\)

In the presence of \(\mathrm{NH}_{3}, \mathrm{Cu}^{2+}\) forms the complex ion \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\). If the equilibrium concentrations of \(\mathrm{Cu}^{2+}\) and \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) are \(1.8 \times 10^{-17} M\) and \(1.0 \times 10^{-3} \mathrm{M}\), respec- tively, in a \(1.5-M \mathrm{NH}_{3}\) solution, calculate the value for the overall formation constant of \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\). \(\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K_{\text {overall }}=?\)

A solution contains \(0.018\) mole each of \(\mathrm{I}^{-}, \mathrm{Br}^{-}\), and \(\mathrm{Cl}^{-}\). When the solution is mixed with 200. \(\mathrm{mL}\) of \(0.24 \mathrm{M} \mathrm{AgNO}_{3}\) what mass of \(\mathrm{AgCl}(s)\) precipitates out, and what is \(\left[\mathrm{Ag}^{+}\right] ?\) Assume no volume change. $$ \begin{aligned} \text { AgI: } K_{\text {sp }} &=1.5 \times 10^{-16} \\ \mathrm{AgBr:} K_{\text {sp }} &=5.0 \times 10^{-13} \\ \mathrm{AgCl}: K_{\text {sp }} &=1.6 \times 10^{-10} \end{aligned} $$

Consider a solution made by mixing \(500.0 \mathrm{~mL}\) of \(4.0 \mathrm{M} \mathrm{NH}_{3}\) and \(500.0 \mathrm{~mL}\) of \(0.40 \mathrm{M} \mathrm{AgNO}_{3} \cdot \mathrm{Ag}^{+}\) reacts with \(\mathrm{NH}_{3}\) to form \(\begin{aligned} \mathrm{AgNH}_{3}{ }^{+} \text {and } \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}+: \\ \mathrm{Ag}^{+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{AgNH}_{3}{ }^{+}(a q) & K_{1}=2.1 \times 10^{3} \\ \mathrm{AgNH}_{3}^{+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}(a q) & K_{2}=8.2 \times 10^{3} \end{aligned}\) Determine the concentration of all species in solution.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free