Chapter 16: Problem 62
Write equations for the stepwise formation of each of the following complex ions. a. \(\mathrm{CoF}_{6}^{3-}\) b. \(\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\)
Chapter 16: Problem 62
Write equations for the stepwise formation of each of the following complex ions. a. \(\mathrm{CoF}_{6}^{3-}\) b. \(\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA solution is prepared by mixing \(100.0 \mathrm{~mL}\) of \(1.0 \times 10^{-4} M\) \(\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}\) and \(100.0 \mathrm{~mL}\) of \(8.0 \mathrm{M} \mathrm{NaF}\). $$ \begin{aligned} \mathrm{Be}^{2+}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}^{+}(a q) & & K_{1}=7.9 \times 10^{4} \\ \mathrm{BeF}^{+}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}_{2}(a q) & & K_{2}=5.8 \times 10^{3} \\ \mathrm{BeF}_{2}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}_{3}-(a q) & & K_{3}=6.1 \times 10^{2} \\ \mathrm{BeF}_{3}^{-}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \mathrm{BeF}_{4}{ }^{2-}(a q) & & K_{4}=2.7 \times 10^{1} \end{aligned} $$ Calculate the equilibrium concentrations of \(\mathrm{F}^{-}, \mathrm{Be}^{2+}, \mathrm{BeF}^{+}\), \(\mathrm{BeF}_{2}, \mathrm{BeF}_{3}^{-}\), and \(\mathrm{BeF}_{4}{ }^{2-}\) in this solution.
For which salt in each of the following groups will the solubility depend on \(\mathrm{pH}\) ? a. \(\mathrm{AgF}, \mathrm{AgCl}, \mathrm{AgBr}\) c. \(\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Sr}\left(\mathrm{NO}_{2}\right)_{2}\) b. \(\mathrm{Pb}(\mathrm{OH})_{2}, \mathrm{PbCl}_{2}\) d. \(\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Ni}(\mathrm{CN})_{2}\)
In the presence of \(\mathrm{NH}_{3}, \mathrm{Cu}^{2+}\) forms the complex ion \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\). If the equilibrium concentrations of \(\mathrm{Cu}^{2+}\) and \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) are \(1.8 \times 10^{-17} M\) and \(1.0 \times 10^{-3} \mathrm{M}\), respec- tively, in a \(1.5-M \mathrm{NH}_{3}\) solution, calculate the value for the overall formation constant of \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\). \(\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K_{\text {overall }}=?\)
A solution contains \(0.018\) mole each of \(\mathrm{I}^{-}, \mathrm{Br}^{-}\), and \(\mathrm{Cl}^{-}\). When the solution is mixed with 200. \(\mathrm{mL}\) of \(0.24 \mathrm{M} \mathrm{AgNO}_{3}\) what mass of \(\mathrm{AgCl}(s)\) precipitates out, and what is \(\left[\mathrm{Ag}^{+}\right] ?\) Assume no volume change. $$ \begin{aligned} \text { AgI: } K_{\text {sp }} &=1.5 \times 10^{-16} \\ \mathrm{AgBr:} K_{\text {sp }} &=5.0 \times 10^{-13} \\ \mathrm{AgCl}: K_{\text {sp }} &=1.6 \times 10^{-10} \end{aligned} $$
Consider a solution made by mixing \(500.0 \mathrm{~mL}\) of \(4.0 \mathrm{M} \mathrm{NH}_{3}\) and \(500.0 \mathrm{~mL}\) of \(0.40 \mathrm{M} \mathrm{AgNO}_{3} \cdot \mathrm{Ag}^{+}\) reacts with \(\mathrm{NH}_{3}\) to form \(\begin{aligned} \mathrm{AgNH}_{3}{ }^{+} \text {and } \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}+: \\ \mathrm{Ag}^{+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{AgNH}_{3}{ }^{+}(a q) & K_{1}=2.1 \times 10^{3} \\ \mathrm{AgNH}_{3}^{+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}(a q) & K_{2}=8.2 \times 10^{3} \end{aligned}\) Determine the concentration of all species in solution.
What do you think about this solution?
We value your feedback to improve our textbook solutions.