Chapter 17: Problem 33
Predict the sign of \(\Delta S_{\text {surr }}\) for the following processes. a. \(\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g)\) b. \(\mathrm{I}_{2}(g) \longrightarrow \mathrm{I}_{2}(s)\)
Chapter 17: Problem 33
Predict the sign of \(\Delta S_{\text {surr }}\) for the following processes. a. \(\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g)\) b. \(\mathrm{I}_{2}(g) \longrightarrow \mathrm{I}_{2}(s)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the text, the equation $$ \Delta G=\Delta G^{\circ}+R T \ln (Q) $$ was derived for gaseous reactions where the quantities in \(Q\) were expressed in units of pressure. We also can use units of \(\mathrm{mol} / \mathrm{L}\) for the quantities in \(Q\), specifically for aqueous reactions. With this in mind, consider the reaction $$ \mathrm{HF}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q) $$ for which \(K_{\mathrm{a}}=7.2 \times 10^{-4}\) at \(25^{\circ} \mathrm{C} .\) Calculate \(\Delta G\) for the reaction under the following conditions at \(25^{\circ} \mathrm{C}\). a. \([\mathrm{HF}]=\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=1.0 \mathrm{M}\) b. \([\mathrm{HF}]=0.98 M,\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=2.7 \times 10^{-2} M\) c. \([\mathrm{HF}]=\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=1.0 \times 10^{-5} \mathrm{M}\) d. \([\mathrm{HF}]=\left[\mathrm{F}^{-}\right]=0.27 M,\left[\mathrm{H}^{+}\right]=7.2 \times 10^{-4} M\) e. \([\mathrm{HF}]=0.52 M,\left[\mathrm{~F}^{-}\right]=0.67 M,\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3} M\) Based on the calculated \(\Delta G\) values, in what direction will the reaction shift to reach equilibrium for each of the five sets of conditions?
You have a \(1.00\) - \(L\) sample of hot water \(\left(90.0^{\circ} \mathrm{C}\right)\) sitting open in a \(25.0^{\circ} \mathrm{C}\) room. Eventually the water cools to \(25.0^{\circ} \mathrm{C}\) while the temperature of the room remains unchanged. Calculate \(\Delta S_{\text {surr }}\) for this process. Assume the density of water is \(1.00 \mathrm{~g} / \mathrm{cm}^{3}\) over this temperature range, and the heat capacity of water is constant over this temperature range and equal to \(75.4 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\).
Using the following data, calculate the value of \(K_{\mathrm{sp}}\) for \(\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\), one of the least soluble of the common nitrate salts. $$ \begin{array}{lc} \text { Species } & \Delta G_{\mathrm{f}}^{\circ} \\ \mathrm{Ba}^{2+}(a q) & -561 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{NO}_{3}^{-}(a q) & -109 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(s) & -797 \mathrm{~kJ} / \mathrm{mol} \\ \hline \end{array} $$
For the reaction $$ \mathrm{SF}_{4}(g)+\mathrm{F}_{2}(g) \longrightarrow \mathrm{SF}_{6}(g) $$ the value of \(\Delta G^{\circ}\) is \(-374 \mathrm{~kJ}\). Use this value and data from Appendix 4 to calculate the value of \(\Delta G_{\mathrm{f}}^{\circ}\) for \(\mathrm{SF}_{4}(g)\).
The synthesis of glucose directly from \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\) and the synthesis of proteins directly from amino acids are both nonspontaneous processes under standard conditions. Yet it is necessary for these to occur for life to exist. In light of the second law of thermodynamics, how can life exist?
What do you think about this solution?
We value your feedback to improve our textbook solutions.