Chapter 17: Problem 38
For mercury, the enthalpy of vaporization is \(58.51 \mathrm{~kJ} / \mathrm{mol}\) and the entropy of vaporization is \(92.92 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\). What is the normal boiling point of mercury?
Chapter 17: Problem 38
For mercury, the enthalpy of vaporization is \(58.51 \mathrm{~kJ} / \mathrm{mol}\) and the entropy of vaporization is \(92.92 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\). What is the normal boiling point of mercury?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the reaction: $$ \mathrm{H}_{2} \mathrm{~S}(g)+\mathrm{SO}_{2}(g) \longrightarrow 3 \mathrm{~S}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ for which \(\Delta H\) is \(-233 \mathrm{~kJ}\) and \(\Delta S\) is \(-424 \mathrm{~J} / \mathrm{K}\). a. Calculate the free energy change for the reaction \((\Delta G)\) at \(393 \mathrm{~K}\). b. Assuming \(\Delta H\) and \(\Delta S\) do not depend on temperature, at what temperatures is this reaction spontaneous?
Given the following data: $$ \begin{aligned} 2 \mathrm{H}_{2}(g)+\mathrm{C}(s) & \longrightarrow \mathrm{CH}_{4}(g) & & \Delta G^{\circ}=-51 \mathrm{~kJ} \\ 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) & & \Delta G^{\circ}=-474 \mathrm{~kJ} \\ \mathrm{C}(s)+\mathrm{O}_{2}(g) & \longrightarrow \mathrm{CO}_{2}(g) & & \Delta G^{\circ}=-394 \mathrm{~kJ} \end{aligned} $$ Calculate \(\Delta G^{\circ}\) for \(\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(l)\).
The synthesis of glucose directly from \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\) and the synthesis of proteins directly from amino acids are both nonspontaneous processes under standard conditions. Yet it is necessary for these to occur for life to exist. In light of the second law of thermodynamics, how can life exist?
Given the values of \(\Delta H\) and \(\Delta S\), which of the following changes will be spontaneous at constant \(T\) and \(P\) ? a. \(\Delta H=+25 \mathrm{~kJ}, \Delta S=+5.0 \mathrm{~J} / \mathrm{K}, T=300 . \mathrm{K}\) b. \(\Delta H=+25 \mathrm{~kJ}, \Delta S=+100 . \mathrm{J} / \mathrm{K}, T=300 . \mathrm{K}\) c. \(\Delta H=-10 . \mathrm{kJ}, \Delta S=+5.0 \mathrm{~J} / \mathrm{K}, T=298 \mathrm{~K}\) d. \(\Delta H=-10 . \mathrm{kJ}, \Delta S=-40 . \mathrm{J} / \mathrm{K}, T=200 . \mathrm{K}\)
The equilibrium constant \(K\) for the reaction $$ 2 \mathrm{Cl}(g) \rightleftharpoons \mathrm{Cl}_{2}(g) $$ was measured as a function of temperature (Kelvin). A graph of \(\ln (K)\) versus \(1 / T\) for this reaction gives a straight line with a slope of \(1.352 \times 10^{4} \mathrm{~K}\) and a \(y\) -intercept of \(-14.51\). Determine the values of \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) for this reaction. See Exercise 79
What do you think about this solution?
We value your feedback to improve our textbook solutions.