The standard free energies of formation and the standard enthalpies of formation at \(298 \mathrm{~K}\) for difluoroacetylene \(\left(\mathrm{C}_{2} \mathrm{~F}_{2}\right)\) and hexafluorobenzene \(\left(\mathrm{C}_{6} \mathrm{~F}_{6}\right)\) are $$ \begin{array}{|lcc|} & \left.\Delta G_{\mathrm{f}}^{\circ}(\mathrm{k}] / \mathrm{mol}\right) & \Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol}) \\ \mathrm{C}_{2} \mathrm{~F}_{2}(g) & 191.2 & 241.3 \\ \mathrm{C}_{6} \mathrm{~F}_{6}(g) & 78.2 & 132.8 \\ \hline \end{array} $$ For the following reaction: $$ \mathrm{C}_{6} \mathrm{~F}_{6}(g) \rightleftharpoons 3 \mathrm{C}_{2} \mathrm{~F}_{2}(g) $$ a. calculate \(\Delta S^{\circ}\) at \(298 \mathrm{~K}\). b. calculate \(K\) at \(298 \mathrm{~K}\). c. estimate \(K\) at \(3000 . \mathrm{K}\), assuming \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) do not depend on temperature.

Short Answer

Expert verified
The standard entropy change at \(298 \mathrm{K}\) is \(\Delta S^{\circ}=0.3222 \mathrm{~kJ/(mol\cdot K)}\). The equilibrium constant at \(298 \mathrm{K}\) is \(K=1.40 \times 10^{-25}\). The estimated equilibrium constant at \(3000 \mathrm{K}\) is \(K=6.98 \times 10^{-26}\).

Step by step solution

01

1. Write down the given data

We are given the standard free energies of formation \(\left(\Delta G_{\mathrm{f}}^{\circ}\right)\) and the standard enthalpies of formation \(\left(\Delta H_{\mathrm{f}}^{\circ}\right)\) for both substances: \(\mathrm{C}_{2}\mathrm{F}_{2}(g): \Delta G_{\mathrm{f}}^{\circ}=191.2 \mathrm{~kJ/mol}, \Delta H_{\mathrm{f}}^{\circ}=241.3 \mathrm{~kJ/mol}\) \(\mathrm{C}_{6}\mathrm{F}_{6}(g): \Delta G_{\mathrm{f}}^{\circ}=78.2 \mathrm{~kJ/mol}, \Delta H_{\mathrm{f}}^{\circ}=132.8 \mathrm{~kJ/mol}\) The reaction is: \(\mathrm{C}_{6}\mathrm{F}_{6}(g) \rightleftharpoons 3 \mathrm{C}_{2}\mathrm{F}_{2}(g)\)
02

2. Calculate ΔG° and ΔH° for the reaction

We can determine the standard Gibbs free energy change of the reaction (\(\Delta G^{\circ}\)) and the standard enthalpy change of the reaction (\(\Delta H^{\circ}\)) by taking the differences of the respective values for the products and reactants. Since there are three moles of \(\mathrm{C}_{2}\mathrm{F}_{2}\) in the product, we need to multiply its values by 3 before subtracting. \(\Delta G^{\circ}=3\Delta G_{\mathrm{f}}^{\circ}(\mathrm{C}_{2}\mathrm{F}_{2})-\Delta G_{\mathrm{f}}^{\circ}(\mathrm{C}_{6}\mathrm{F}_{6})\) \(\Delta G^{\circ}=3(191.2)-78.2=495.4 \mathrm{~kJ/mol}\) \(\Delta H^{\circ}=3\Delta H_{\mathrm{f}}^{\circ}(\mathrm{C}_{2}\mathrm{F}_{2})-\Delta H_{\mathrm{f}}^{\circ}(\mathrm{C}_{6}\mathrm{F}_{6})\) \(\Delta H^{\circ}=3(241.3)-132.8=591.1 \mathrm{~kJ/mol}\)
03

3. Calculate ΔS°

We can find the standard entropy change of the reaction (\(\Delta S^{\circ}\)) by using the relationship between Gibbs free energy, enthalpy, and entropy: \(\Delta G^{\circ}=\Delta H^{\circ}-T\Delta S^{\circ}\) Rearrange the equation to solve for the standard entropy change: \(\Delta S^{\circ}=\frac{\Delta H^{\circ}-\Delta G^{\circ}}{T}\) Substitute the values at \(T=298 \mathrm{K}\): \(\Delta S^{\circ}=\frac{591.1-495.4}{298}=0.3222 \mathrm{~kJ/(mol\cdot K)}\) Ans: The standard entropy change at \(298 \mathrm{K}\) is \(\Delta S^{\circ}=0.3222 \mathrm{~kJ/(mol\cdot K)}\). #b. Calculate the Equilibrium Constant K at 298 K#
04

4. Use the Gibbs Free Energy Change to Find K

We know that: \(\Delta G^{\circ}=-RT \ln{K}\) Rearrange the equation to solve for the equilibrium constant (\(K\)): \(K = e^{-\frac{\Delta G^{\circ}}{RT}}\) Substitute the values at \(T=298 \mathrm{K}\) and \(R=8.314 \times 10^{-3} \mathrm{~kJ/(mol\cdot K)}\): \(K = e^{-\frac{495.4}{(8.314 \times 10^{-3})\cdot 298}}=1.40 \times 10^{-25}\) Ans: The equilibrium constant at \(298 \mathrm{K}\) is \(K=1.40 \times 10^{-25}\). #c. Estimate K at 3000 K#
05

5. Use the Van 't Hoff Equation

The Van 't Hoff equation relates the equilibrium constant at two different temperatures: \(\frac{d\ln{K}}{dT}=\frac{\Delta H^{\circ}}{RT^{2}}\) Integrate with respect to temperature, assuming \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) are constant: \(\ln{K_2}-\ln{K_1}=-\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_2}-\frac{1}{T_1}\right)\) The problem asks to estimate \(K\) at \(T_2 = 3000 \mathrm{K}\). We know \(K_1\) and \(T_1 = 298 \mathrm{K}\). Substitute values and solve for \(K_2\): \(\ln{K_2}=\ln{1.40 \times 10^{-25}}+\frac{591.1}{8.314\times10^{-3}}\left(\frac{1}{3000}-\frac{1}{298}\right)\) \(\ln{K_2}=-57.689\) \(K_2=e^{-57.689}=6.98\times10^{-26}\) Ans: The estimated equilibrium constant at \(3000 \mathrm{K}\) is \(K=6.98 \times 10^{-26}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You have a \(1.00\) - \(L\) sample of hot water \(\left(90.0^{\circ} \mathrm{C}\right)\) sitting open in a \(25.0^{\circ} \mathrm{C}\) room. Eventually the water cools to \(25.0^{\circ} \mathrm{C}\) while the temperature of the room remains unchanged. Calculate \(\Delta S_{\text {surr }}\) for this process. Assume the density of water is \(1.00 \mathrm{~g} / \mathrm{cm}^{3}\) over this temperature range, and the heat capacity of water is constant over this temperature range and equal to \(75.4 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\).

Consider the following reaction: $$ \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{Cl}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{HOCl}(g) \quad K_{298}=0.090 $$ For \(\mathrm{Cl}_{2} \mathrm{O}(g)\), $$ \begin{aligned} \Delta G_{\mathrm{f}}^{\circ} &=97.9 \mathrm{~kJ} / \mathrm{mol} \\ \Delta H_{\mathrm{f}}^{\circ} &=80.3 \mathrm{~kJ} / \mathrm{mol} \\ S^{\circ} &=266.1 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol} \end{aligned} $$ a. Calculate \(\Delta G^{\circ}\) for the reaction using the equation \(\Delta G^{\circ}=-R T \ln (K)\) b. Use bond energy values (Table 8.4) to estimate \(\Delta H^{\circ}\) for the reaction. c. Use the results from parts a and \(\mathrm{b}\) to estimate \(\Delta S^{\circ}\) for the reaction. d. Estimate \(\Delta H_{\mathrm{f}}^{\circ}\) and \(S^{\circ}\) for \(\mathrm{HOCl}(g)\). e. Estimate the value of \(K\) at \(500 . \mathrm{K}\). f. Calculate \(\Delta G\) at \(25^{\circ} \mathrm{C}\) when \(P_{\mathrm{H}_{2} \mathrm{O}}=18\) torr, \(P_{\mathrm{Cl}_{2} \mathrm{O}}=\) \(2.0\) torr, and \(P_{\mathrm{HOCl}}=0.10\) torr.

Predict the sign of \(\Delta S^{\circ}\) for each of the following changes. a. \(\mathrm{K}(s)+\frac{1}{2} \mathrm{Br}_{2}(g) \longrightarrow \mathrm{KBr}(s)\) b. \(\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)\) c. \(\mathrm{KBr}(s) \longrightarrow \mathrm{K}^{+}(a q)+\mathrm{Br}^{-}(a q)\) d. \(\mathrm{KBr}(s) \longrightarrow \mathrm{KBr}(l)\)

Given the following data: $$ \begin{aligned} 2 \mathrm{H}_{2}(g)+\mathrm{C}(s) & \longrightarrow \mathrm{CH}_{4}(g) & & \Delta G^{\circ}=-51 \mathrm{~kJ} \\ 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) & & \Delta G^{\circ}=-474 \mathrm{~kJ} \\ \mathrm{C}(s)+\mathrm{O}_{2}(g) & \longrightarrow \mathrm{CO}_{2}(g) & & \Delta G^{\circ}=-394 \mathrm{~kJ} \end{aligned} $$ Calculate \(\Delta G^{\circ}\) for \(\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(l)\).

Using Appendix 4 and the following data, determine \(S^{\circ}\) for \(\mathrm{Fe}(\mathrm{CO})_{5}(g)\) $$ \begin{aligned} \mathrm{Fe}(s)+5 \mathrm{CO}(g) & \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(g) & & \Delta S^{\circ}=? \\ \mathrm{Fe}(\mathrm{CO})_{5}(l) & \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(g) & & \Delta S^{\circ}=107 \mathrm{~J} / \mathrm{K} \\ \mathrm{Fe}(s)+5 \mathrm{CO}(g) & \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(l) & & \Delta S^{\circ}=-677 \mathrm{~J} / \mathrm{K} \end{aligned} $$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free