Using Appendix 4 and the following data, determine \(S^{\circ}\) for \(\mathrm{Fe}(\mathrm{CO})_{5}(g)\) $$ \begin{aligned} \mathrm{Fe}(s)+5 \mathrm{CO}(g) & \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(g) & & \Delta S^{\circ}=? \\ \mathrm{Fe}(\mathrm{CO})_{5}(l) & \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(g) & & \Delta S^{\circ}=107 \mathrm{~J} / \mathrm{K} \\ \mathrm{Fe}(s)+5 \mathrm{CO}(g) & \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(l) & & \Delta S^{\circ}=-677 \mathrm{~J} / \mathrm{K} \end{aligned} $$

Short Answer

Expert verified
The \(\Delta S^{\circ}\) for the target reaction \(\mathrm{Fe}(s)+5 \mathrm{CO}(g) \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(g)\) is \(-784 \mathrm{~J}/\mathrm{K}\).

Step by step solution

01

Identify the given equations and their \(\Delta S^{\circ}\)

For this problem, we are given the following two reactions: 1. \(\mathrm{Fe}(\mathrm{CO})_{5}(l) \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(g)\) with \(\Delta S^{\circ}=107 \mathrm{~J} / \mathrm{K}\) 2. \(\mathrm{Fe}(s)+5 \mathrm{CO}(g) \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(l)\) with \(\Delta S^{\circ}=-677 \mathrm{~J} / \mathrm{K}\) The target reaction is: $$\mathrm{Fe}(s)+5 \mathrm{CO}(g) \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(g)$$
02

Manipulate the given reactions to match the target reaction

To arrive at the target reaction, we need to manipulate the given reactions in a way that can be added together. Observe that reversing reaction 1 gives us the gaseous form of \(\mathrm{Fe}(\mathrm{CO})_{5}\), which is present in the target reaction. Let's reverse reaction 1 and change the sign of its \(\Delta S^{\circ}\): $$\mathrm{Fe}(\mathrm{CO})_{5}(g) \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(l)$$ with \(\Delta S^{\circ}=-107 \mathrm{~J} / \mathrm{K}\) Now, we can add reaction 2 and the reversed reaction 1 to obtain the target reaction: $$\mathrm{Fe}(s)+5 \mathrm{CO}(g) \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(l)$$ with \(\Delta S^{\circ}=-677 \mathrm{~J} / \mathrm{K}\) $$+\mathrm{Fe}(\mathrm{CO})_{5}(g) \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(l)$$ with \(\Delta S^{\circ}=-107 \mathrm{~J} / \mathrm{K}\) $$\implies \mathrm{Fe}(s)+5 \mathrm{CO}(g) \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(g)$$
03

Find the \(\Delta S^{\circ}\) for the target reaction

Now that we have the target reaction, we can calculate its \(\Delta S^{\circ}\) by adding the \(\Delta S^{\circ}\) values of the manipulated given reactions: $$\Delta S^{\circ}_{\text{target}} = \Delta S^{\circ}_{2} + \Delta S^{\circ}_{\text{reversed 1}}$$ $$\Delta S^{\circ}_{\text{target}} = -677 \mathrm{~J} / \mathrm{K} + (-107 \mathrm{~J} / \mathrm{K})$$ $$\Delta S^{\circ}_{\text{target}} = -784 \mathrm{~J} / \mathrm{K}$$ Therefore, the \(\Delta S^{\circ}\) for the target reaction \(\mathrm{Fe}(s)+5 \mathrm{CO}(g) \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(g)\) is \(-784 \mathrm{~J}/\mathrm{K}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For each of the following pairs of substances, which substance has the greater value of \(S^{\circ}\) ? a. \(\mathrm{C}_{\text {graphite }}(s)\) or \(\mathrm{C}_{\text {diamond }}(s)\) b. \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)\) or \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(g)\) c. \(\mathrm{CO}_{2}(s)\) or \(\mathrm{CO}_{2}(g)\)

Consider the following reaction: $$ \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) $$ Calculate \(\Delta G\) for this reaction under the following conditions (assume an uncertainty of \(\pm 1\) in all quantities): a. \(T=298 \mathrm{~K}, P_{\mathrm{N}_{2}}=P_{\mathrm{H}_{2}}=200 \mathrm{~atm}, P_{\mathrm{NH}_{3}}=50 \mathrm{~atm}\) b. \(T=298 \mathrm{~K}, P_{\mathrm{N}_{2}}=200 \mathrm{~atm}, P_{\mathrm{H}_{2}}=600 \mathrm{~atm}\), \(P_{\mathrm{NH}_{3}}=200 \mathrm{~atm}\)

Consider the following reaction: $$ \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{Cl}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{HOCl}(g) \quad K_{298}=0.090 $$ For \(\mathrm{Cl}_{2} \mathrm{O}(g)\), $$ \begin{aligned} \Delta G_{\mathrm{f}}^{\circ} &=97.9 \mathrm{~kJ} / \mathrm{mol} \\ \Delta H_{\mathrm{f}}^{\circ} &=80.3 \mathrm{~kJ} / \mathrm{mol} \\ S^{\circ} &=266.1 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol} \end{aligned} $$ a. Calculate \(\Delta G^{\circ}\) for the reaction using the equation \(\Delta G^{\circ}=-R T \ln (K)\) b. Use bond energy values (Table 8.4) to estimate \(\Delta H^{\circ}\) for the reaction. c. Use the results from parts a and \(\mathrm{b}\) to estimate \(\Delta S^{\circ}\) for the reaction. d. Estimate \(\Delta H_{\mathrm{f}}^{\circ}\) and \(S^{\circ}\) for \(\mathrm{HOCl}(g)\). e. Estimate the value of \(K\) at \(500 . \mathrm{K}\). f. Calculate \(\Delta G\) at \(25^{\circ} \mathrm{C}\) when \(P_{\mathrm{H}_{2} \mathrm{O}}=18\) torr, \(P_{\mathrm{Cl}_{2} \mathrm{O}}=\) \(2.0\) torr, and \(P_{\mathrm{HOCl}}=0.10\) torr.

Hydrogen cyanide is produced industrially by the following exothermic reaction: Is the high temperature needed for thermodynamic or kinetic reasons?

Carbon monoxide is toxic because it bonds much more strongly to the iron in hemoglobin (Hgb) than does \(\mathrm{O}_{2}\). Consider the following reactions and approximate standard free energy changes: $$ \begin{array}{cl} \mathrm{Hgb}+\mathrm{O}_{2} \longrightarrow \mathrm{HgbO}_{2} & \Delta G^{\circ}=-70 \mathrm{~kJ} \\ \mathrm{Hgb}+\mathrm{CO} \longrightarrow \mathrm{HgbCO} & \Delta G^{\circ}=-80 \mathrm{~kJ} \end{array} $$ Using these data, estimate the equilibrium constant value at \(25^{\circ} \mathrm{C}\) for the following reaction: $$ \mathrm{HgbO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{HgbCO}+\mathrm{O}_{2} $$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free