Chapter 17: Problem 90
In the text, the equation $$ \Delta G=\Delta G^{\circ}+R T \ln (Q) $$ was derived for gaseous reactions where the quantities in \(Q\) were expressed in units of pressure. We also can use units of \(\mathrm{mol} / \mathrm{L}\) for the quantities in \(Q\), specifically for aqueous reactions. With this in mind, consider the reaction $$ \mathrm{HF}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q) $$ for which \(K_{\mathrm{a}}=7.2 \times 10^{-4}\) at \(25^{\circ} \mathrm{C} .\) Calculate \(\Delta G\) for the reaction under the following conditions at \(25^{\circ} \mathrm{C}\). a. \([\mathrm{HF}]=\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=1.0 \mathrm{M}\) b. \([\mathrm{HF}]=0.98 M,\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=2.7 \times 10^{-2} M\) c. \([\mathrm{HF}]=\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=1.0 \times 10^{-5} \mathrm{M}\) d. \([\mathrm{HF}]=\left[\mathrm{F}^{-}\right]=0.27 M,\left[\mathrm{H}^{+}\right]=7.2 \times 10^{-4} M\) e. \([\mathrm{HF}]=0.52 M,\left[\mathrm{~F}^{-}\right]=0.67 M,\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3} M\) Based on the calculated \(\Delta G\) values, in what direction will the reaction shift to reach equilibrium for each of the five sets of conditions?