In the text, the equation $$ \Delta G=\Delta G^{\circ}+R T \ln (Q) $$ was derived for gaseous reactions where the quantities in \(Q\) were expressed in units of pressure. We also can use units of \(\mathrm{mol} / \mathrm{L}\) for the quantities in \(Q\), specifically for aqueous reactions. With this in mind, consider the reaction $$ \mathrm{HF}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q) $$ for which \(K_{\mathrm{a}}=7.2 \times 10^{-4}\) at \(25^{\circ} \mathrm{C} .\) Calculate \(\Delta G\) for the reaction under the following conditions at \(25^{\circ} \mathrm{C}\). a. \([\mathrm{HF}]=\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=1.0 \mathrm{M}\) b. \([\mathrm{HF}]=0.98 M,\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=2.7 \times 10^{-2} M\) c. \([\mathrm{HF}]=\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=1.0 \times 10^{-5} \mathrm{M}\) d. \([\mathrm{HF}]=\left[\mathrm{F}^{-}\right]=0.27 M,\left[\mathrm{H}^{+}\right]=7.2 \times 10^{-4} M\) e. \([\mathrm{HF}]=0.52 M,\left[\mathrm{~F}^{-}\right]=0.67 M,\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3} M\) Based on the calculated \(\Delta G\) values, in what direction will the reaction shift to reach equilibrium for each of the five sets of conditions?

Short Answer

Expert verified
The calculated $\Delta G$ values and the direction of the reaction for each set of conditions are: a. $\Delta G_a = 3320.5 \, \mathrm{J/mol}$; the reaction will proceed in the reverse direction to reach equilibrium. b. $\Delta G_b = 6681.2 \, \mathrm{J/mol}$; the reaction will proceed in the reverse direction to reach equilibrium. c. $\Delta G_c = 5960.0 \, \mathrm{J/mol}$; the reaction will proceed in the reverse direction to reach equilibrium. d. $\Delta G_d = 0 \, \mathrm{J/mol}$; the reaction is at equilibrium. e. $\Delta G_e = 1151.6 \, \mathrm{J/mol}$; the reaction will proceed in the reverse direction to reach equilibrium.

Step by step solution

01

Calculate \(\Delta G^\circ\) from \(K_a\).

For any reaction, the relationship between \(\Delta G^\circ\), \(K_a\), \(R\), and \(T\) is given as: $$ \Delta G^\circ = -RT \ln(K_a) $$ Here, \(K_a = 7.2 \times 10^{-4}\), \(R = 8.314 \, \mathrm{J/(mol \cdot K)}\), and \(T = 25 + 273.15 = 298.15 \, \mathrm{K}\). Plugging in the values, we get: $$ \Delta G^\circ = - (8.314 \, \mathrm{J/(mol \cdot K)}) (298.15 \, \mathrm{K}) \ln(7.2 \times 10^{-4}) $$ Calculating this, we find that \(\Delta G^\circ\): $$ \Delta G^\circ ≈ 3320.5 \, \mathrm{J/mol} $$ #Step 2: Calculate the reaction quotient Q for different conditions#
02

Calculate the reaction quotient \(Q\) for different conditions.

For the given reaction, the reaction quotient \(Q\) is defined as the product of the concentrations of products divided by the concentration of the reactants: $$ Q = \frac{[H^+][F^-]}{[HF]} $$ Now, calculate \(Q\) for each set of conditions (a-e): a. \(Q_a = \frac{1.0 \times 1.0}{1.0} = 1\) b. \(Q_b = \frac{(7.2 \times 10^{-4}) \times (7.2 \times 10^{-4})}{0.98} ≈ 5.3 \times 10^{-6}\) c. \(Q_c = \frac{1.0 \times 10^{-5} \times 1.0 \times 10^{-5}}{1.0 \times 10^{-5}} = 1.0 \times 10^{-5}\) d. \(Q_d = \frac{(7.2 \times 10^{-4}) \times 0.27}{0.27} = 7.2 \times 10^{-4}\) e. \(Q_e = \frac{(1 \times 10^{-3}) \times 0.67}{0.52} ≈ 1.3 \times 10^{-3}\) #Step 3: Calculate \(\Delta G\) for different conditions#
03

Calculate \(\Delta G\) for different conditions.

Using the equation \(\Delta G = \Delta G^\circ + RT \ln(Q)\), we can calculate \(\Delta G\) for different conditions (a-e): a. \(\Delta G_a = 3320.5 \, \mathrm{J/mol} + (8.314 \, \mathrm{J/(mol \cdot K)})(298.15 \, \mathrm{K}) \ln(1) = 3320.5 \, \mathrm{J/mol}\) b. \(\Delta G_b = 3320.5 \, \mathrm{J/mol} + (8.314 \, \mathrm{J/(mol \cdot K)})(298.15 \, \mathrm{K}) \ln(5.3 \times 10^{-6}) ≈ 6681.2 \, \mathrm{J/mol}\) c. \(\Delta G_c = 3320.5 \, \mathrm{J/mol} + (8.314 \, \mathrm{J/(mol \cdot K)})(298.15 \, \mathrm{K}) \ln(1.0 \times 10^{-5}) ≈ 5960.0 \, \mathrm{J/mol}\) d. \(\Delta G_d = 3320.5 \, \mathrm{J/mol} + (8.314 \, \mathrm{J/(mol \cdot K)})(298.15 \, \mathrm{K}) \ln(7.2 \times 10^{-4}) = 0 \, \mathrm{J/mol}\) e. \(\Delta G_e = 3320.5 \, \mathrm{J/mol} + (8.314 \, \mathrm{J/(mol \cdot K)})(298.15 \, \mathrm{K}) \ln(1.3 \times 10^{-3}) ≈ 1151.6 \, \mathrm{J/mol}\) #Step 4: Determine the direction of the reaction for different conditions#
04

Determine the direction of the reaction for different conditions.

The direction of the reaction can be determined based on the sign of \(\Delta G\): a. \(\Delta G_a > 0\): The reaction will proceed in the reverse direction to reach equilibrium. b. \(\Delta G_b > 0\): The reaction will proceed in the reverse direction to reach equilibrium. c. \(\Delta G_c > 0\): The reaction will proceed in the reverse direction to reach equilibrium. d. \(\Delta G_d = 0\): The reaction is at equilibrium. e. \(\Delta G_e > 0\): The reaction will proceed in the reverse direction to reach equilibrium.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate \(\Delta G^{\circ}\) for \(\mathrm{H}_{2} \mathrm{O}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(g)\) at \(600 . \mathrm{K}\), using the following data: \(\mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(g) \quad K=2.3 \times 10^{6}\) at 600. \(\mathrm{K}\) \(2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(g) \quad K=1.8 \times 10^{37}\) at \(600 . \mathrm{K}\)

The standard free energies of formation and the standard enthalpies of formation at \(298 \mathrm{~K}\) for difluoroacetylene \(\left(\mathrm{C}_{2} \mathrm{~F}_{2}\right)\) and hexafluorobenzene \(\left(\mathrm{C}_{6} \mathrm{~F}_{6}\right)\) are $$ \begin{array}{|lcc|} & \left.\Delta G_{\mathrm{f}}^{\circ}(\mathrm{k}] / \mathrm{mol}\right) & \Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol}) \\ \mathrm{C}_{2} \mathrm{~F}_{2}(g) & 191.2 & 241.3 \\ \mathrm{C}_{6} \mathrm{~F}_{6}(g) & 78.2 & 132.8 \\ \hline \end{array} $$ For the following reaction: $$ \mathrm{C}_{6} \mathrm{~F}_{6}(g) \rightleftharpoons 3 \mathrm{C}_{2} \mathrm{~F}_{2}(g) $$ a. calculate \(\Delta S^{\circ}\) at \(298 \mathrm{~K}\). b. calculate \(K\) at \(298 \mathrm{~K}\). c. estimate \(K\) at \(3000 . \mathrm{K}\), assuming \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) do not depend on temperature.

Consider the reaction $$ 2 \mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(g) $$ For each of the following mixtures of reactants and products at \(25^{\circ} \mathrm{C}\), predict the direction in which the reaction will shift to reach equilibrium. a. \(P_{\mathrm{NO}_{2}}=P_{\mathrm{N}_{2} \mathrm{O}_{4}}=1.0 \mathrm{~atm}\) b. \(P_{\mathrm{NO}_{2}}=0.21 \mathrm{~atm}, P_{\mathrm{N}_{2} \mathrm{O}_{4}}=0.50 \mathrm{~atm}\) c. \(P_{\mathrm{NO},}=0.29 \mathrm{~atm}, P_{\mathrm{N}, \mathrm{O}_{4}}=1.6 \mathrm{~atm}\)

Using Appendix 4 and the following data, determine \(S^{\circ}\) for \(\mathrm{Fe}(\mathrm{CO})_{5}(g)\) $$ \begin{aligned} \mathrm{Fe}(s)+5 \mathrm{CO}(g) & \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(g) & & \Delta S^{\circ}=? \\ \mathrm{Fe}(\mathrm{CO})_{5}(l) & \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(g) & & \Delta S^{\circ}=107 \mathrm{~J} / \mathrm{K} \\ \mathrm{Fe}(s)+5 \mathrm{CO}(g) & \longrightarrow \mathrm{Fe}(\mathrm{CO})_{5}(l) & & \Delta S^{\circ}=-677 \mathrm{~J} / \mathrm{K} \end{aligned} $$

Some nonelectrolyte solute (molar mass \(=142 \mathrm{~g} / \mathrm{mol}\) ) was dissolved in \(150 . \mathrm{mL}\) of a solvent \(\left(\right.\) density \(\left.=0.879 \mathrm{~g} / \mathrm{cm}^{3}\right)\). The elevated boiling point of the solution was \(355.4 \mathrm{~K}\). What mass of solute was dissolved in the solvent? For the solvent, the enthalpy of vaporization is \(33.90 \mathrm{~kJ} / \mathrm{mol}\), the entropy of vaporization is \(95.95 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\), and the boiling-point elevation constant is \(2.5 \mathrm{~K} \cdot \mathrm{kg} / \mathrm{mol}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free