Chapter 18: Problem 156
An electrochemical cell is set up using the following unbalanced reaction: $$ \mathrm{M}^{a+}(a q)+\mathrm{N}(s) \longrightarrow \mathrm{N}^{2+}(a q)+\mathrm{M}(s) $$ The standard reduction potentials are: $$ \begin{array}{ll} \mathrm{M}^{a+}+a \mathrm{e}^{-} \longrightarrow \mathrm{M} & \mathscr{E}^{\circ}=0.400 \mathrm{~V} \\ \mathrm{~N}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{N} & \mathscr{E}^{\circ}=0.240 \mathrm{~V} \end{array} $$ The cell contains \(0.10 \mathrm{M} \mathrm{N}^{2+}\) and produces a voltage of \(0.180 \mathrm{~V}\). If the concentration of \(\mathrm{M}^{a+}\) is such that the value of the reaction quotient \(Q\) is \(9.32 \times 10^{-3}\), calculate \(\left[\mathrm{M}^{a+}\right]\). Calculate \(w_{\max }\) for this electrochemical cell.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.