Balance the following oxidation-reduction reactions that occur in acidic solution using the half-reaction method. a. \(\mathrm{Cu}(s)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{Cu}^{2+}(a q)+\mathrm{NO}(g)\) b. \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{Cr}^{3+}(a q)+\mathrm{Cl}_{2}(g)\) c. \(\mathrm{Pb}(s)+\mathrm{PbO}_{2}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \operatorname{PbSO}_{4}(s)\) d. \(\mathrm{Mn}^{2+}(a q)+\mathrm{NaBiO}_{3}(s) \rightarrow \mathrm{Bi}^{3+}(a q)+\mathrm{MnO}_{4}^{-}(a q)\) e. \(\mathrm{H}_{3} \mathrm{AsO}_{4}(a q)+\mathrm{Zn}(s) \rightarrow \mathrm{AsH}_{3}(g)+\mathrm{Zn}^{2+}(a q)\)

Short Answer

Expert verified
Balancing the other reactions: c. \(3\mathrm{Pb}(s) + 2\mathrm{PbO}_{2}(s) + 3\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow 5\operatorname{PbSO}_{4}(s) + 6\mathrm{H_2O}(l)\) d. \(\mathrm{Mn}^{2+}(a q)+ 2\mathrm{NaBiO}_{3}(s) + 2\mathrm{H}^+(a q) \rightarrow \mathrm{Bi}^{3+}(a q)+ 2\mathrm{MnO}_{4}^{-}(a q) + 2\mathrm{Na}^+(a q) + \mathrm{H_2O}(l)\) e. \(2\mathrm{H}_{3} \mathrm{AsO}_{4}(a q)+ 3\mathrm{Zn}(s) \rightarrow 2\mathrm{AsH}_{3}(g)+ 3\mathrm{Zn}^{2+}(a q) + 4\mathrm{H}_2\mathrm{O}(l)\)

Step by step solution

01

a. Balancing the reaction: Cu(s) + NO3−(aq) → Cu2+(aq) + NO(g) Step 1: Write the half-reactions

Oxidation half-reaction: \(\mathrm{Cu}(s) \rightarrow \mathrm{Cu}^{2+}(a q)\) Reduction half-reaction: \(\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{NO}(g)\) Step 2: Balance atoms and charges
02

Oxidation half-reaction: \[\mathrm{Cu}(s) \rightarrow \mathrm{Cu}^{2+}(a q) + 2e^-\] Reduction half-reaction: \[\mathrm{NO}_{3}^{-}(a q) + 4\mathrm{H}^+(a q) + 3e^- \rightarrow \mathrm{NO}(g) + 2\mathrm{H}_2\mathrm{O}(l)\] Step 3: Combine the half-reactions

Multiply the oxidation half-reaction by 3 and the reduction half-reaction by 2 to equalize the electrons: \[3\mathrm{Cu}(s) \rightarrow 3\mathrm{Cu}^{2+}(a q) + 6e^-\] \[2\mathrm{NO}_{3}^{-}(a q) + 8\mathrm{H}^+(a q) + 6e^- \rightarrow 2\mathrm{NO}(g) + 4\mathrm{H}_2\mathrm{O}(l)\] Then, add the two half-reactions together: \[3\mathrm{Cu}(s) + 2\mathrm{NO}_{3}^{-}(a q) + 8\mathrm{H}^+(a q) \rightarrow 3\mathrm{Cu}^{2+}(a q) + 2\mathrm{NO}(g) + 4\mathrm{H}_2\mathrm{O}(l)\] We've balanced the first reaction: Cu(s) + NO3−(aq) → Cu2+(aq) + NO(g).
03

b. Balancing the reaction: Cr2O72−(aq) + Cl−(aq) → Cr3+(aq) + Cl2(g) Step 1: Write the half-reactions

Oxidation half-reaction: \(\mathrm{Cl}^-(a q) \rightarrow \mathrm{Cl}_{2}(g)\) Reduction half-reaction: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) \rightarrow \mathrm{Cr}^{3+}(a q)\) Step 2: Balance atoms and charges
04

Oxidation half-reaction: \[\mathrm{2Cl}^-(a q) \rightarrow \mathrm{Cl}_{2}(g) + 2e^-\] Reduction half-reaction: \[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) + 14\mathrm{H}^+(a q) + 6e^- \rightarrow 2\mathrm{Cr}^{3+}(a q) + 7\mathrm{H}_2\mathrm{O}(l)\] Step 3: Combine the half-reactions

Multiply the oxidation half-reaction by 3 and the reduction half-reaction by 2 to equalize the electrons: \[6\mathrm{Cl}^-(a q) \rightarrow 3\mathrm{Cl}_{2}(g) + 6e^-\] \[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) + 14\mathrm{H}^+(a q) + 6e^- \rightarrow 2\mathrm{Cr}^{3+}(a q) + 7\mathrm{H}_2\mathrm{O}(l)\] Then, add the two half-reactions together: \[6\mathrm{Cl}^-(a q) + \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) + 14\mathrm{H}^+(a q) \rightarrow 3\mathrm{Cl}_{2}(g) + 2\mathrm{Cr}^{3+}(a q) + 7\mathrm{H}_2\mathrm{O}(l)\] We've balanced the second reaction: Cr2O72−(aq) + Cl−(aq) → Cr3+(aq) + Cl2(g). Note: We'll follow similar procedure for the reactions c, d, and e.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A fuel cell designed to react grain alcohol with oxygen has the following net reaction: $$ \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) $$ The maximum work that 1 mole of alcohol can do is \(1.32 \times\) \(10^{3} \mathrm{~kJ}\). What is the theoretical maximum voltage this cell can achieve at \(25^{\circ} \mathrm{C} ?\)

A solution containing \(\mathrm{Pt}^{4+}\) is electrolyzed with a current of \(4.00 \mathrm{~A}\). How long will it take to plate out \(99 \%\) of the platinum in \(0.50 \mathrm{~L}\) of a \(0.010-M\) solution of \(\mathrm{Pt}^{4+}\) ?

Consider the following galvanic cell at \(25^{\circ} \mathrm{C}\) : $$ \mathrm{Pt}\left|\mathrm{Cr}^{2+}(0.30 \mathrm{M}), \mathrm{Cr}^{3+}(2.0 \mathrm{M})\right|\left|\mathrm{Co}^{2+}(0.20 \mathrm{M})\right| \mathrm{Co} $$ The overall reaction and equilibrium constant value are $$ \begin{aligned} 2 \mathrm{Cr}^{2+}(a q)+\mathrm{Co}^{2+}(a q) & \longrightarrow & \\ 2 \mathrm{Cr}^{3+}(a q)+\mathrm{Co}(s) & K &=2.79 \times 10^{7} \end{aligned} $$ Calculate the cell potential, \(\mathscr{E}\), for this galvanic cell and \(\Delta G\) for the cell reaction at these conditions.

A zinc-copper battery is constructed as follows at \(25^{\circ} \mathrm{C}\) : $$ \mathrm{Zn}\left|\mathrm{Zn}^{2+}(0.10 M)\right|\left|\mathrm{Cu}^{2+}(2.50 M)\right| \mathrm{Cu} $$ The mass of each electrode is \(200 . \mathrm{g}\). a. Calculate the cell potential when this battery is first connected. b. Calculate the cell potential after \(10.0 \mathrm{~A}\) of current has flowed for \(10.0 \mathrm{~h}\). (Assume each half-cell contains \(1.00 \mathrm{~L}\) of solution.) c. Calculate the mass of each electrode after \(10.0 \mathrm{~h}\). d. How long can this battery deliver a current of \(10.0 \mathrm{~A}\) before it goes dead?

When jump-starting a car with a dead battery, the ground jumper should be attached to a remote part of the engine block. Why?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free