Balance the following oxidation-reduction reactions that occur in basic solution. a. \(\mathrm{Cr}(s)+\mathrm{CrO}_{4}^{2-}(a q) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(s)\) b. \(\mathrm{MnO}_{4}^{-}(a q)+\mathrm{S}^{2-}(a q) \rightarrow \mathrm{MnS}(s)+\mathrm{S}(s)\) c. \(\mathrm{CN}^{-}(a q)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{CNO}^{-}(a q)+\mathrm{MnO}_{2}(s)\)

Short Answer

Expert verified
The balanced oxidation-reduction reactions in basic solutions are: a. \(Cr(s) + CrO_{4}^{2-} + 2H_{2}O \rightarrow Cr(OH)_{3} (s) + 3OH^{-}\) b. \(2MnO_{4}^{-} + 5S^{2-} + 8H_{2}O \rightarrow 2MnS(s) + 10S(s) + 16OH^{-}\) c. \(3CN^{-} + 2MnO_{4}^{-} + 5H_{2}O \rightarrow 3CNO^{-} + 2MnO_{2}(s) + 10OH^{-}\)

Step by step solution

01

a. Balancing the redox reaction: \(Cr(s) + CrO_{4}^{2-} (aq) \rightarrow Cr(OH)_{3} (s)\)

Step 1: Determine the oxidation states of elements involved: In the given equation, the oxidation states of the elements are as follows: - For \(Cr(s)\), the oxidation state is 0. - For \(CrO_{4}^{2-}\), the oxidation state of Cr is +6. - For \(Cr(OH)_{3}\), the oxidation state of Cr is +3. Step 2: Write the half-reactions for oxidation and reduction: Oxidation: \(Cr(s) \rightarrow Cr^{3+}\) (oxidation state change from 0 to +3) Reduction: \(Cr^{6+} \rightarrow Cr^{3+}\) (oxidation state change from +6 to +3) Step 3: Balance the half-reactions: Oxidation: \(Cr(s) \rightarrow Cr^{3+} + 3e^{-}\) (Balance charge by adding electrons) Reduction: \(Cr^{6+} + 3e^{-} \rightarrow Cr^{3+}\) (Balance charge by adding electrons) Step 4: Balance hydrogens and oxygens in the reduction half-reaction: Add 4 \(OH^{-}\) to balance the oxygens in the \(CrO_{4}^{2-}\). Then add 4 \(H_{2}O\) to balance the hydrogens: Reduction: \(CrO_{4}^{2-} + 3e^{-} + 8H^{+} \rightarrow Cr^{3+} + 4H_{2}O\) Step 5: Eliminate the extra species in the balanced half-reactions: Combine the two half-reactions, eliminating \(Cr^{3+}\) and \(3e^{-}\), obtaining: \(Cr(s) + CrO_{4}^{2-} + 8H^{+} \rightarrow Cr^{3+} + 4H_{2}O + Cr^{3+}\) Step 6: Balance the final equation by simplifying and combining: \(Cr(s) + CrO_{4}^{2-} + 8H^{+} \rightarrow 2Cr^{3+} + 4H_{2}O\) Add 6 \(OH^{-}\) on both sides to obtain balanced equation in basic solution: \(Cr(s) + CrO_{4}^{2-} + 2H_{2}O \rightarrow Cr(OH)_{3} (s) + 3OH^{-}\)
02

b. Balancing the redox reaction: \(MnO_{4}^{-}(aq) + S^{2-}(aq) \rightarrow MnS(s) + S(s)\)

Step 1: Determine the oxidation states of elements involved: - For \(MnO_{4}^{-}\), the oxidation state of Mn is +7. - For \(MnS\), the oxidation state of Mn is +2. - For \(S^{2-}\), the oxidation state of S is -2. - For \(S(s)\), the oxidation state of S is 0. Step 2: Write the half-reactions for oxidation and reduction: Oxidation: \(S^{2-} \rightarrow S(s)\) (oxidation state change from -2 to 0) Reduction: \(Mn^{7+} \rightarrow Mn^{2+}\) (oxidation state change from +7 to +2) Step 3: Balance the half-reactions: Oxidation: \(S^{2-} \rightarrow S(s) + 2e^{-}\) (Balance charge by adding electrons) Reduction: \(Mn^{7+} + 5e^{-} \rightarrow Mn^{2+}\) (Balance charge by adding electrons) Step 4: Balance the hydrogens and oxygens in the reduction half-reaction: Add 4 \(OH^{-}\) to balance the oxygens in the \(MnO_{4}^{-}\). Then add 4 \(H_{2}O\) to balance the hydrogens: Reduction: \(MnO_{4}^{-} + 5e^{-} + 8H^{+} \rightarrow Mn^{2+} + 4H_{2}O\) Step 5: Multiply half-reactions to make electrons equal and add them: \[2*(MnO_{4}^{-} + 5e^{-} + 8H^{+} \rightarrow Mn^{2+} + 4H_{2}O)\] \[5*(S^{2-} \rightarrow S(s) + 2e^{-})\] Sum: \(2MnO_{4}^{-} + 10e^{-} + 16H^{+} + 5S^{2-} \rightarrow 2Mn^{2+} + 8H_{2}O + 10S(s) + 10e^{-}\) Step 6: Balance the final equation by simplifying and combining: \(2MnO_{4}^{-} + 16H^{+} + 5S^{2-} \rightarrow 2Mn^{2+} + 8H_{2}O + 10S(s)\) Add 16 \(OH^{-}\) on both sides to obtain: \(2MnO_{4}^{-} + 5S^{2-} + 8H_{2}O \rightarrow 2MnS(s) + 10S(s) + 16OH^{-}\)
03

c. Balancing the redox reaction: \(CN^{-}(aq) + MnO_{4}^{-}(aq) \rightarrow CNO^{-}(aq) + MnO_{2}(s)\)

Step 1: Determine the oxidation states of elements involved: - For \(CN^{-}\), the oxidation state of C is +2. - For \(CNO^{-}\), the oxidation state of C is +4. - For \(MnO_{4}^{-}\), the oxidation state of Mn is +7. - For \(MnO_{2}\), the oxidation state of Mn is +4. Step 2: Write the half-reactions for oxidation and reduction: Oxidation: \(C^{2+} \rightarrow C^{4+}\) (oxidation state change from +2 to +4) Reduction: \(Mn^{7+} \rightarrow Mn^{4+}\) (oxidation state change from +7 to +4) Step 3: Balance the half-reactions: Oxidation: \(C^{2+} \rightarrow C^{4+} + 2e^{-}\) (Balance charge by adding electrons) Reduction: \(Mn^{7+} + 3e^{-} \rightarrow Mn^{4+}\) (Balance charge by adding electrons) Step 4: Balance the hydrogens and oxygens in the reduction half-reaction: Add 4 \(OH^{-}\) to balance the oxygens in the \(MnO_{4}^{-}\). Then add 4 \(H_{2}O\) to balance the hydrogens: Reduction: \(MnO_{4}^{-} + 3e^{-} + 8H^{+} \rightarrow MnO_{2}(s) + 4H_{2}O\) Step 5: Balance the hydrogens and oxygens in the oxidation half-reaction: Add 1 \(OH^{-}\) and 1 \(H_{2}O\) to \/ the oxidation half-reaction: Oxidation: \(CN^{-} + H_{2}O \rightarrow CNO^{-} + 2e^{-} + 2H^{+}\) Step 6: Multiply half-reactions to make electrons equal and add them: \[3*(CN^{-} + H_{2}O \rightarrow CNO^{-} + 2e^{-} + 2H^{+})\] \[2*(MnO_{4}^{-} + 3e^{-} + 8H^{+} \rightarrow MnO_{2}(s) + 4H_{2}O)\] Sum: \(3CN^{-} + 3H_{2}O + 2MnO_{4}^{-} + 24H^{+} \rightarrow 3CNO^{-} + 6e^{-} + 6H^{+} + 2MnO_{2}(s) + 8H_{2}O\) Step 7: Balance the final equation by simplifying and combining: \(3CN^{-} + 2MnO_{4}^{-} + 10H^{+} \rightarrow 3CNO^{-} + 2MnO_{2}(s) + 5H_{2}O\) Add 10 \(OH^{-}\) on both sides to obtain: \(3CN^{-} + 2MnO_{4}^{-} + 5H_{2}O \rightarrow 3CNO^{-} + 2MnO_{2}(s) + 10OH^{-}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The following standard reduction potentials have been det mined for the aqueous chemistry of indium: $$ \begin{array}{cl} \mathrm{In}^{3+}(a q)+2 \mathrm{e}^{-} \longrightarrow \operatorname{In}^{+}(a q) & \mathscr{E}^{\circ}=-0.444 \mathrm{~V} \\ \mathrm{In}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \operatorname{In}(s) & \mathscr{E}^{\circ}=-0.126 \mathrm{~V} \end{array} $$ a. What is the equilibrium constant for the disproportionation reaction, where a species is both oxidized and reduced, shown below? $$ 3 \operatorname{In}^{+}(a q) \longrightarrow 2 \operatorname{In}(s)+\operatorname{In}^{3+}(a q) $$ b. What is \(\Delta G_{\mathrm{f}}^{\circ}\) for \(\operatorname{In}^{+}(a q)\) if \(\Delta G_{\mathrm{f}}^{\circ}=-97.9 \mathrm{~kJ} / \mathrm{mol}\) for \(\mathrm{In}^{3+}(a q) ?\)

When copper reacts with nitric acid, a mixture of \(\mathrm{NO}(g)\) and \(\mathrm{NO}_{2}(g)\) is evolved. The volume ratio of the two product gases depends on the concentration of the nitric acid according to the equilibrium \(2 \mathrm{H}^{+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)+\mathrm{NO}(g) \rightleftharpoons 3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)\) Consider the following standard reduction potentials at \(25^{\circ} \mathrm{C}\) : \(3 \mathrm{e}^{-}+4 \mathrm{H}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NO}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)\) \(\mathscr{E}^{\circ}=0.957 \mathrm{~V}\) \(\mathrm{e}^{-}+2 \mathrm{H}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)\) \(\mathscr{E}^{\circ}=0.775 \mathrm{~V}\) a. Calculate the equilibrium constant for the above reaction. b. What concentration of nitric acid will produce a \(\mathrm{NO}\) and \(\mathrm{NO}_{2}\) mixture with only \(0.20 \% \mathrm{NO}_{2}\) (by moles) at \(25^{\circ} \mathrm{C}\) and \(1.00\) atm? Assume that no other gases are present and that the change in acid concentration can be neglected.

Gold is produced electrochemically from an aqueous solution of \(\mathrm{Au}(\mathrm{CN})_{2}^{-}\) containing an excess of \(\mathrm{CN}^{-}\). Gold metal and oxygen gas are produced at the electrodes. What amount (moles) of \(\mathrm{O}_{2}\) will be produced during the production of \(1.00 \mathrm{~mole}\) of gold?

Consider the galvanic cell based on the following halfreactions: $$ \begin{array}{ll} \mathrm{Au}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Au} & \mathscr{E}^{\circ}=1.50 \mathrm{~V} \\ \mathrm{Tl}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Tl} & \mathscr{E}^{\circ}=-0.34 \mathrm{~V} \end{array} $$

Assign oxidation numbers to all the atoms in each of the following: a. \(\mathrm{HNO}_{3}\) e. \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) i. \(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) b. \(\mathrm{CuCl}_{2}\) f. \(\mathrm{Ag}\) j. \(\mathrm{CO}_{2}\) c. \(\mathrm{O}_{2}\) g. \(\mathrm{PbSO}_{4}\) k. \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{3}\) d. \(\mathrm{H}_{2} \mathrm{O}_{2}\) h. \(\mathrm{PbO}_{2}\) 1\. \(\mathrm{Cr}_{2} \mathrm{O}_{3}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free