Give the balanced cell equation and determine \(\mathscr{E}^{\circ}\) for the galvanic cells based on the following half-reactions. Standard reduction potentials are found in Table 18.1. a. \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}\) \(\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\) b. \(2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}\) \(\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}\)

Short Answer

Expert verified
a. The balanced cell equation for cell a is: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} + 6\mathrm{H}_{2} \mathrm{O}_{2} + 20\mathrm{H}^{+} \rightarrow 2\mathrm{Cr}^{3+} + 13\mathrm{H}_{2} \mathrm{O}\) with a standard cell potential of \(\mathscr{E}^{\circ}= 3.10 \,\text{V}\). b. The balanced cell equation for cell b is: \(\mathrm{H}_{2} + \mathrm{Al}^{3+} \rightarrow 2 \mathrm{H}^{+} + \mathrm{Al}\) with a standard cell potential of \(\mathscr{E}^{\circ}= 1.66 \,\text{V}\).

Step by step solution

01

Balancing Half-Reactions

First, let's figure out the balanced reaction for cell a. We have: Oxidation: \(\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\) Reduction: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}\) We need to balance the number of electrons in both half-reactions so that the total number of electrons in oxidation and reduction are equal. To do this, we can multiply the oxidation half-reaction by 3.
02

Balancing the Cell Reaction

Now our balanced half-reactions are: Oxidation: \(3\mathrm{(H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O})\) Reduction: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}\) Now we can add the half-reactions together to get the balanced cell reaction: \(3(\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}) + \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 3(2 \mathrm{H}_{2} \mathrm{O}) + 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}\) Simplify the equation: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} + 6\mathrm{H}_{2} \mathrm{O}_{2} + 20\mathrm{H}^{+} \rightarrow 2\mathrm{Cr}^{3+} + 13\mathrm{H}_{2} \mathrm{O}\)
03

Calculating \(\mathscr{E}^{\circ}\) for Cell a

Using Table 18.1, we can find the standard reduction potentials for the half-reactions: Oxidation (reverse of the original reaction): \(-\mathscr{E}^{\circ}(\mathrm{H}_{2} \mathrm{O}_{2}) = -1.77 \,\text{V}\) Reduction: \(\mathscr{E}^{\circ}(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}) = 1.33 \,\text{V}\) Now we can calculate the total cell potential: \(\mathscr{E}^{\circ}_{total}=\mathscr{E}^{\circ}_{reduction} + (-\mathscr{E}^{\circ}_{oxidation})\) \(\mathscr{E}^{\circ}_{total}= 1.33 \,\text{V} - (-1.77 \,\text{V})\) \(\mathscr{E}^{\circ}_{total}= 3.10 \,\text{V}\) _Cell b_
04

Balancing Half-Reactions

Similarly, let's balance the half-reactions for cell b: Oxidation: \(\mathrm{H}_{2} \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}\) Reduction: \(\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}\) Both half-reactions are already balanced in terms of electrons.
05

Balancing the Cell Reaction

Now we can add the half-reactions together to get the balanced cell reaction: \(\mathrm{H}_{2} + \mathrm{Al}^{3+} \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-} + \mathrm{Al}\) Simplify the equation: \(\mathrm{H}_{2} + \mathrm{Al}^{3+} \longrightarrow 2 \mathrm{H}^{+} + \mathrm{Al}\)
06

Calculating \(\mathscr{E}^{\circ}\) for Cell b

Using Table 18.1, we can find the standard reduction potentials for the half-reactions: Oxidation (reverse of the original reaction): \(-\mathscr{E}^{\circ}(\mathrm{H}_{2}) = 0 \,\text{V}\) Reduction: \(\mathscr{E}^{\circ}(\mathrm{Al}^{3+}) = -1.66 \,\text{V}\) Now we can calculate the total cell potential: \(\mathscr{E}^{\circ}_{total}=-\mathscr{E}^{\circ}_{oxidation} + \mathscr{E}^{\circ}_{reduction}\) \(\mathscr{E}^{\circ}_{total}= 0 \,\text{V} - (-1.66 \,\text{V})\) \(\mathscr{E}^{\circ}_{total}= 1.66 \,\text{V}\) So, the balanced cell equations and their corresponding standard cell potentials are: a. \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} + 6\mathrm{H}_{2} \mathrm{O}_{2} + 20\mathrm{H}^{+} \rightarrow 2\mathrm{Cr}^{3+} + 13\mathrm{H}_{2} \mathrm{O}\) with \(\mathscr{E}^{\circ}= 3.10 \,\text{V}\) b. \(\mathrm{H}_{2} + \mathrm{Al}^{3+} \rightarrow 2 \mathrm{H}^{+} + \mathrm{Al}\) with \(\mathscr{E}^{\circ}= 1.66 \,\text{V}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free