An electrochemical cell consists of a silver metal electrode immersed in a
solution with \(\left[\mathrm{Ag}^{+}\right]=1.00 M\) separated by a porous disk
from a compartment with a copper metal electrode immersed in a solution of
\(10.00 \mathrm{M} \mathrm{NH}_{3}\) that also contains \(2.4 \times 10^{-3}
\mathrm{M} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+} .\) The equilibrium
between
\(\mathrm{Cu}^{2+}\) and \(\mathrm{NH}_{3}\) is:
\(\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons
\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K=1.0 \times
10^{13}\)
and the two cell half-reactions are:
$$
\begin{aligned}
\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag} &
\mathscr{E}^{\circ}=0.80 \mathrm{~V} \\
\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu} &
\mathscr{E}^{\circ}=0.34 \mathrm{~V}
\end{aligned}
$$
Assuming \(\mathrm{Ag}^{+}\) is reduced, what is the cell potential at
\(25^{\circ} \mathrm{C}\) ?