The equation \(\Delta G^{\circ}=-n F \mathscr{E}^{\circ}\) also can be applied to halfreactions. Use standard reduction potentials to estimate \(\Delta G_{\mathrm{f}}^{\circ}\) for \(\mathrm{Fe}^{2+}(a q)\) and \(\mathrm{Fe}^{3+}(a q) .\left(\Delta G_{\mathrm{f}}^{\circ}\right.\) for \(\left.\mathrm{e}^{-}=0 .\right)\)

Short Answer

Expert verified
The standard Gibbs free energy of formation (ΔGf°) for Fe²⁺(aq) and Fe³⁺(aq) can be calculated using the equation ΔG° = -nFℰ° and the standard reduction potentials. The balanced half-reactions are: \(Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)\) with \(E°_{Fe^{2+}/Fe} = -0.44 V\) \(Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)\) with \(E°_{Fe^{3+}/Fe} = -0.036 V\) Using these values, we find that the ΔGf° for Fe²⁺(aq) is approximately 84965.6 J/mol and the ΔGf° for Fe³⁺(aq) is approximately 10460.42 J/mol.

Step by step solution

01

Write the balanced half-reactions for Fe²⁺ and Fe³⁺

The balanced half-reactions for Fe²⁺ and Fe³⁺ are: \(Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)\) \(Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)\) Now we have the half-reactions, and we know the number of electrons involved (n) in each reaction.
02

Find the standard reduction potentials for the half-reactions

You can find the standard reduction potentials for these half-reactions in a standard reduction potential table: For Fe²⁺: \(E°_{Fe^{2+}/Fe} = -0.44 V\) For Fe³⁺: \(E°_{Fe^{3+}/Fe} = -0.036 V\)
03

Calculate the ΔGf° for Fe²⁺ and Fe³⁺

Use the equation ΔG° = -nFℰ° to find the ΔGf° for each species. Faraday's constant (F) is equal to 96485 C/mol. For Fe²⁺: ΔG° = -nFℰ° ΔG° = -(2 mol)(96485 C/mol)(-0.44 V) ΔG° = 84965.6 J/mol For Fe³⁺: ΔG° = -nFℰ° ΔG° = -(3 mol)(96485 C/mol)(-0.036 V) ΔG° = 10460.42 J/mol Thus, the ΔGf° for Fe²⁺(aq) is approximately 84965.6 J/mol and the ΔGf° for Fe³⁺(aq) is approximately 10460.42 J/mol.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Balance the following equations by the half-reaction method. a. \(\mathrm{Fe}(s)+\mathrm{HCl}(a q) \longrightarrow \mathrm{HFeCl}_{4}(a q)+\mathrm{H}_{2}(g)\) b. \(\mathrm{IO}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) \stackrel{\text { Acid }}{\longrightarrow} \mathrm{I}_{3}^{-}(a q)\) c. \(\mathrm{Cr}(\mathrm{NCS})_{6}^{4-}(a q)+\mathrm{Ce}^{4+}(a q) \stackrel{\text { Acid }}{\longrightarrow}\) \(\mathrm{Cr}^{3+}(a q)+\mathrm{Ce}^{3+}(a q)+\mathrm{NO}_{3}^{-}(a q)+\mathrm{CO}_{2}(g)+\mathrm{SO}_{4}{ }^{2-}(a q)\) d. \(\operatorname{CrI}_{3}(s)+\mathrm{Cl}_{2}(g) \stackrel{\text { Base }}{\longrightarrow}\) \(\operatorname{CrO}_{4}{ }^{2-}(a q)+\mathrm{IO}_{4}^{-}(a q)+\mathrm{Cl}^{-}(a q)\) e. \(\mathrm{Fe}(\mathrm{CN})_{6}^{4-}(a q)+\mathrm{Ce}^{4+}(a q) \stackrel{\text { Base }}{\longrightarrow}\) \(\mathrm{Ce}(\mathrm{OH})_{3}(s)+\mathrm{Fe}(\mathrm{OH})_{3}(s)+\mathrm{CO}_{3}^{2-}(a q)+\mathrm{NO}_{3}^{-}(a q)\)

The Ostwald process for the commercial production of nitric acid involves the following three steps: $$ \begin{aligned} 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) & \longrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) \\ 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{NO}_{2}(g) \\ 3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) & \longrightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g) \end{aligned} $$ a. Which reactions in the Ostwald process are oxidationreduction reactions? b. Identify each oxidizing agent and reducing agent.

Calculate the \(\mathrm{pH}\) of the cathode compartment for the following reaction given \(\mathscr{E}_{\text {cell }}=3.01 \mathrm{~V}\) when \(\left[\mathrm{Cr}^{3+}\right]=0.15 \mathrm{M}\), \(\left[\mathrm{Al}^{3+}\right]=0.30 M\), and \(\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]=0.55 M\) \(2 \mathrm{Al}(s)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}^{+}(a q) \longrightarrow\) \(2 \mathrm{Al}^{3+}(a q)+2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(l)\)

Balance the following oxidation-reduction reactions that occur in basic solution. a. \(\mathrm{Cr}(s)+\mathrm{CrO}_{4}^{2-}(a q) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(s)\) b. \(\mathrm{MnO}_{4}^{-}(a q)+\mathrm{S}^{2-}(a q) \rightarrow \mathrm{MnS}(s)+\mathrm{S}(s)\) c. \(\mathrm{CN}^{-}(a q)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{CNO}^{-}(a q)+\mathrm{MnO}_{2}(s)\)

Consider a concentration cell that has both electrodes made of some metal M. Solution A in one compartment of the cell contains \(1.0 M \mathrm{M}^{2+}\). Solution B in the other cell compartment has a volume of \(1.00 \mathrm{~L}\). At the beginning of the experiment \(0.0100\) mole of \(\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}\) and \(0.0100\) mole of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) are dissolved in solution \(\mathrm{B}\) (ignore volume changes), where the reaction $$ \mathrm{M}^{2+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q) \rightleftharpoons \mathrm{MSO}_{4}(s) $$ occurs. For this reaction equilibrium is rapidly established, whereupon the cell potential is found to be \(0.44 \mathrm{~V}\) at \(25^{\circ} \mathrm{C}\). Assume that the process $$ \mathrm{M}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{M} $$ has a standard reduction potential of \(-0.31 \mathrm{~V}\) and that no other redox process occurs in the cell. Calculate the value of \(K_{\text {sp }}\) for \(\operatorname{MSO}_{4}(s)\) at \(25^{\circ} \mathrm{C}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free