Write electron configurations for each of the following. a. \(\mathrm{Ti}, \mathrm{Ti}^{2+}, \mathrm{Ti}^{4+}\) b. \(\operatorname{Re}, \mathrm{Re}^{2+}, \mathrm{Re}^{3+}\) c. \(\mathrm{Ir}, \mathrm{Ir}^{2+}, \mathrm{Ir}^{3+}\)

Short Answer

Expert verified
a. Titanium: \(\mathrm{Ti: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2}\), \(\mathrm{Ti^{2+}: 1s^2 2s^2 2p^6 3s^2 3p^6 3d^2}\), \(\mathrm{Ti^{4+}: 1s^2 2s^2 2p^6 3s^2 3p^6}\) b. Rhenium: \(\mathrm{Re: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^5}\), \(\mathrm{Re^{2+}: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 4f^{14} 5d^3}\), \(\mathrm{Re^{3+}: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 4f^{14} 5d^2}\) c. Iridium: \(\mathrm{Ir: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^7}\), \(\mathrm{Ir^{2+}: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 4f^{14} 5d^5}\), \(\mathrm{Ir^{3+}: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 4f^{14} 5d^4}\)

Step by step solution

01

Determine the atomic numbers

Using the periodic table, find the atomic numbers for the elements mentioned in the exercise. a. Titanium (Ti): Atomic number 22 b. Rhenium (Re): Atomic number 75 c. Iridium (Ir): Atomic number 77
02

Determine the electron configurations for the elements

Write the electron configurations for each element using the elements' atomic numbers. Remember to follow the aufbau principle, the Pauli exclusion principle, and Hund's rule. a. Titanium (Ti) - Atomic number: 22 \(\mathrm{Ti: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2}\) b. Rhenium (Re) - Atomic number: 75 \(\mathrm{Re: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^5}\) c. Iridium (Ir) - Atomic number: 77 \(\mathrm{Ir: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^7}\)
03

Determine the electron configurations for the ions

Use the electron configurations from step 2 to find the electron configurations for the given ions. Remember to remove electrons when forming positive ions. a. Titanium Ions - \(\mathrm{Ti^{2+}: 1s^2 2s^2 2p^6 3s^2 3p^6 3d^2}\) (Remove two electrons from the highest energy level - 4s) - \(\mathrm{Ti^{4+}: 1s^2 2s^2 2p^6 3s^2 3p^6}\) (Remove four electrons from the highest energy levels - 3d, and 4s) b. Rhenium Ions - \(\mathrm{Re^{2+}: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 4f^{14} 5d^3}\) (Remove two electrons from the highest energy level - 6s) - \(\mathrm{Re^{3+}: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 4f^{14} 5d^2}\) (Remove three electrons from the highest energy levels - 6s, and 5d) c. Iridium Ions - \(\mathrm{Ir^{2+}: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 4f^{14} 5d^5}\) (Remove two electrons from the highest energy level - 6s) - \(\mathrm{Ir^{3+}: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 4f^{14} 5d^4}\) (Remove three electrons from the highest energy levels - 6s, and 5d)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a. In the absorption spectrum of the complex ion \(\mathrm{Cr}(\mathrm{NCS})_{6}{ }^{3-}\), there is a band corresponding to the absorption of a photon of light with an energy of \(1.75 \times 10^{4} \mathrm{~cm}^{-1}\). Given \(1 \mathrm{~cm}^{-1}=\) \(1.986 \times 10^{-23} \mathrm{~J}\), what is the wavelength of this photon? b. The \(\mathrm{Cr}-\mathrm{N}-\mathrm{C}\) bond angle in \(\mathrm{Cr}(\mathrm{NCS})_{6}{ }^{3-}\) is predicted to be \(180^{\circ}\). What is the hybridization of the \(\mathrm{N}\) atom in the \(\mathrm{NCS}^{-}\) ligand when a Lewis acid-base reaction occurs between \(\mathrm{Cr}^{3+}\) and \(\mathrm{NCS}^{-}\) that would give a \(180^{\circ}\) \(\mathrm{Cr}-\mathrm{N}-\mathrm{C}\) bond angle? \(\mathrm{Cr}(\mathrm{NCS})_{6}{ }^{3-}\) undergoes sub- stitution by ethylenediamine (en) according to the equation $$ \mathrm{Cr}(\mathrm{NCS})_{6}^{3-}+2 \mathrm{en} \longrightarrow \mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}^{+}+4 \mathrm{NCS}^{-} $$ Does \(\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}^{+}\) exhibit geometric isomerism? Does \(\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}^{+}\) exhibit optical isomerism?

Almost all metals in nature are found as ionic compounds in ores instead of being in the pure state. Why? What must be done to a sample of ore to obtain a metal substance that has desirable properties?

Draw all the geometrical isomers of \(\mathrm{Cr}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2} \mathrm{BrCl}^{+} .\) Which of these isomers also have an optical isomer? Draw the various isomers.

Draw all geometrical and linkage isomers of \(\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\).

How many unpaired electrons are in the following complex ions? a. \(\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\) (low-spin case) b. \(\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}\) c. \(\mathrm{V}(\mathrm{en})_{3}{ }^{3+}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free