Calculate \(\Delta H\) for the reaction $$ \mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ given the following data: $$ \begin{array}{cr} \text { Equation } & \Delta H(\mathrm{k}\rfloor) \\ 2 \mathrm{NH}_{3}(g)+3 \mathrm{~N}_{2} \mathrm{O}(g) \longrightarrow 4 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(I) & -1010 \\ \mathrm{~N}_{2} \mathrm{O}(g)+3 \mathrm{H}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(I)+\mathrm{H}_{2} \mathrm{O}(I) & -317 \\ 2 \mathrm{NH}_{3}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(I)+\mathrm{H}_{2} \mathrm{O}(I) & -143 \\ \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(I) & -286 \end{array} $$

Short Answer

Expert verified
The enthalpy change for the reaction \(\mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)\) is \(\Delta H = -398 \space kJ\).

Step by step solution

01

Identify the target reaction

The target reaction is: $$ \mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) $$
02

Manipulate the given reactions

We need to manipulate the given reactions in such a way that, when summed, they reproduce the target reaction. Taking the third given reaction: $$ 2 \mathrm{NH}_{3}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{H}_{2} \mathrm{O}(l) \space\space\space\space\space\space\space (\Delta H = -143\space kJ) \\ $$ And the fourth given reaction, multiplying it by 2 to get 2 molecules of \(\mathrm{H}_{2} \mathrm{O}(I)\): $$ 2(\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(I)) \space\space\space\space (\Delta H = 2\times-286\space kJ) \\ $$ Now, add these two reactions: $$ 2 \mathrm{NH}_{3}(g) + \mathrm{O}_{2}(g) + 2\mathrm{H}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(l) + 2 \mathrm{H}_{2} \mathrm{O}(l) $$ Also, we can take the second given reaction: $$ \mathrm{N}_{2} \mathrm{O}(g)+3 \mathrm{H}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{H}_{2} \mathrm{O}(I) \space\space\space\space\space\space\space (\Delta H = -317\space kJ) $$ And reverse it: $$ \mathrm{N}_{2} \mathrm{H}_{4}(l) + \mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{N}_{2} \mathrm{O}(g) + 3\mathrm{H}_{2}(g) \space\space\space\space\space (\Delta H = 317\space kJ) $$ If we now subtract the reversed second reaction from the previous summed reaction, we will obtain our target reaction.
03

Combine the manipulated reactions

Combining the previous manipulations: Target Reaction: $$ \mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ Enthalpy Changes: $$ \Delta H_\text{target} = (-143 + 2\times-286) - 317 $$
04

Calculate the enthalpy change for the target reaction

Evaluate the expression for \(\Delta H_\text{target}\): $$ \Delta H_\text{target} = (-143 - 2\times286) + 317 \\ \Delta H_\text{target} = (-143 - 572) + 317 \\ \Delta H_\text{target} = -398\space kJ $$ The enthalpy change for the target reaction is -398 kJ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A fire is started in a fireplace by striking a match and lighting crumpled paper under some logs. Explain all the energy transfers in this scenario using the terms exothermic, endothermic, system, surroundings, potential energy, and kinetic energy in the discussion.

One mole of \(\mathrm{H}_{2} \mathrm{O}(g)\) at \(1.00 \mathrm{~atm}\) and \(100 .{ }^{\circ} \mathrm{C}\) occupies a volume of \(30.6 \mathrm{~L}\). When 1 mole of \(\mathrm{H}_{2} \mathrm{O}(g)\) is condensed to 1 mole of \(\mathrm{H}_{2} \mathrm{O}(l)\) at \(1.00\) atm and \(100 .{ }^{\circ} \mathrm{C}, 40.66 \mathrm{~kJ}\) of heat is released. If the density of \(\mathrm{H}_{2} \mathrm{O}(l)\) at this temperature and pressure is \(0.996 \mathrm{~g} / \mathrm{cm}^{3}\), calculate \(\Delta E\) for the condensation of 1 mole of water at \(1.00 \mathrm{~atm}\) and \(100 .{ }^{\circ} \mathrm{C}\).

A system releases \(125 \mathrm{~kJ}\) of heat while \(104 \mathrm{~kJ}\) of work is done on it. Calculate \(\Delta E\).

Ethanol \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\) has been proposed as an alternative fuel. Calculate the standard enthalpy of combustion per gram of liquid ethanol.

Given the following data \(\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{CO}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{CO}_{2}(g) \quad \Delta H^{\circ}=-23 \mathrm{~kJ}\) \(3 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+\mathrm{CO}(g) \longrightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+\mathrm{CO}_{2}(g) \quad \Delta H^{\circ}=-39 \mathrm{~kJ}\) \(\mathrm{Fe}_{3} \mathrm{O}_{4}(s)+\mathrm{CO}(g) \longrightarrow 3 \mathrm{FeO}(s)+\mathrm{CO}_{2}(g) \quad \Delta H^{\circ}=18 \mathrm{~kJ}\) calculate \(\Delta H^{\circ}\) for the reaction $$ \mathrm{FeO}(s)+\mathrm{CO}(g) \longrightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g) $$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free