Chapter 6: Problem 131
You have a 1.00-mole sample of water at \(-30 .{ }^{\circ} \mathrm{C}\) and you heat it until you have gaseous water at \(140 .{ }^{\circ} \mathrm{C}\). Calculate \(q\) for the entire process. Use the following data. Specific heat capacity of ice \(=2.03 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}\) Specific heat capacity of water \(=4.18 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}\) Specific heat capacity of steam \(=2.02 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}\) \(\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H_{\text {fusion }}=6.02 \mathrm{~kJ} / \mathrm{mol}\left(\right.\) at \(\left.0^{\circ} \mathrm{C}\right)\) \(\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g) \quad \Delta H_{\text {vaporization }}=40.7 \mathrm{~kJ} / \mathrm{mol}\left(\right.\) at \(\left.100 .^{\circ} \mathrm{C}\right)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.