Nitromethane, \(\mathrm{CH}_{3} \mathrm{NO}_{2}\), can be used as a fuel. When the liquid is burned, the (unbalanced) reaction is mainly $$ \mathrm{CH}_{3} \mathrm{NO}_{2}(l)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{N}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) $$ a. The standard enthalpy change of reaction \(\left(\Delta H_{\mathrm{rxn}}^{\circ}\right)\) for the balanced reaction (with lowest whole- number coefficients) is \(-1288.5 \mathrm{~kJ}\). Calculate \(\Delta H_{\mathrm{f}}^{\circ}\) for nitromethane. b. A \(15.0\) - \(\mathrm{L}\) flask containing a sample of nitromethane is filled with \(\mathrm{O}_{2}\) and the flask is heated to \(100 .{ }^{\circ} \mathrm{C}\). At this temperature, and after the reaction is complete, the total pressure of all the gases inside the flask is 950 . torr. If the mole fraction of nitrogen \(\left(\chi_{\text {nitrogen }}\right)\) is \(0.134\) after the reaction is complete, what mass of nitrogen was produced?

Short Answer

Expert verified
The standard enthalpy of formation for nitromethane, \(\Delta H_{f(\mathrm{CH}_{3} \mathrm{NO}_{2})}^{\circ}\), is \(-93.65\,\text{kJ/mol}\). In the second part, the mass of nitrogen produced after the reaction inside a $15.0\,\text{L}$ flask is \(3.02\,\text{g}\).

Step by step solution

01

Balance the chemical equation

To find the standard enthalpy of formation, we first need to balance the given equation: \[ \mathrm{CH}_{3} \mathrm{NO}_{2}(l)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{N}_{2}(g)+2\mathrm{H}_{2} \mathrm{O}(g) \] Balanced equation: \[ 2\mathrm{CH}_{3} \mathrm{NO}_{2}(l)+3\mathrm{O}_{2}(g) \longrightarrow 2\mathrm{CO}_{2}(g)+2\mathrm{N}_{2}(g)+6\mathrm{H}_{2} \mathrm{O}(g) \]
02

Calculate standard enthalpy of formation

We can use the standard enthalpy of formation relationship to find the value of the enthalpy change for nitromethane: \[ \Delta H_{rxn}^{\circ}=\sum n \Delta H_{f(products)}^{\circ}-\sum n \Delta H_{f(reactants)}^{\circ} \] where \(\Delta H_{rxn}^{\circ}\) is the standard enthalpy change of reaction, \(\Delta H_{f(products)}^{\circ}\) and \(\Delta H_{f(reactants)}^{\circ}\) are the standard enthalpy of formation for products and reactants, and n represents the coefficients in the balanced equation. We know the standard enthalpy of formation for the products and reactants excluding nitromethane: \(ΔH_{f(CO_2)}^{\circ}=-393.5 kJ \cdot mol^{-1}\) \(ΔH_{f(N_2)}^{\circ}=0 kJ \cdot mol^{-1}\) \(ΔH_{f(H_2O)}^{\circ}=-241.8 kJ \cdot mol^{-1}\) \(ΔH_{f(O_2)}^{\circ}=0 kJ \cdot mol^{-1}\) We can rewrite the relationship to isolate \(\Delta H_{f(\mathrm{CH}_{3}\mathrm{NO}_{2})}^{\circ}\): \[ \Delta H_{f(\mathrm{CH}_{3} \mathrm{NO}_{2})}^{\circ}=\frac{\Delta H_{rxn}^{\circ} -\sum n \Delta H_{f(products)}^{\circ}+\sum n \Delta H_{f(reactants)}^{\circ}}{2} \] Plugging in the known values: \[ \Delta H_{f(\mathrm{CH}_{3} \mathrm{NO}_{2})}^{\circ}=\frac{-1288.5 \,\text{kJ}- [(2\cdot(-393.5\,\text{kJ})+(2(0\,\text{kJ}))+6\cdot(-241.8\,\text{kJ}))-3\cdot(0\,\text{kJ})]}{2} \] Calculating the standard enthalpy of formation for nitromethane: \[ \Delta H_{f(\mathrm{CH}_{3} \mathrm{NO}_{2})}^{\circ}=-93.65\,\text{kJ/mol} \] #Part b: Mass of nitrogen produced#
03

Calculate partial pressure of nitrogen

The mole fraction of nitrogen is given as 0.134. We can use this value to find the partial pressure of nitrogen in the gas mixture: \[ P_{\text{nitrogen}}=\chi_{\text {nitrogen }} \times P_{\text{total}} \] Plugging in the given values: \[ P_{\text{nitrogen}}=0.134 \times 950\, \text{torr} \] Calculating the partial pressure of nitrogen: \[ P_{\text{nitrogen}}=127.3\, \text{torr} \]
04

Convert to moles and mass of nitrogen

We can apply the ideal gas law to determine the moles of nitrogen: \[ PV=nRT \\ n=\frac{PV}{RT} \] where P is pressure in atm, V is volume, n is the moles of the gas, R is the gas constant, and T is the temperature in Kelvin. Convert the given temperature of \(100^{\circ}\) C to Kelvin and the pressure in torr to atm: \(T_{K}=100+273.15=373.15\, \text{K}\) \(P_{atm}=\frac{127.3\, \text{torr}}{760\, \text{torr/atm}}=0.1675\, \text{atm}\) Plugging in the known values into the ideal gas law: \[ n=\frac{(0.1675\,\text{atm})(15.0\,\mathrm{L})}{(0.0821\, \mathrm{L\cdot atm/mol\cdot K})(373.15\, \mathrm{K})} \] Calculate the moles of nitrogen produced: \[ n=0.108\, \text{mol} \] Now, convert the moles of nitrogen into mass: \[ \text{mass}=\text{moles} \times \text{molar mass} \] The molar mass of nitrogen is 28.02 g/mol, therefore: \[ \text{mass}=(0.108\, \text{mol})(28.02\, \text{g/mol}) \] Calculate the mass of nitrogen: \[ \text{mass}=3.02\, \text{g} \] The mass of nitrogen produced is 3.02 g.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Given the following data \(\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{CO}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{CO}_{2}(g) \quad \Delta H^{\circ}=-23 \mathrm{~kJ}\) \(3 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+\mathrm{CO}(g) \longrightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+\mathrm{CO}_{2}(g) \quad \Delta H^{\circ}=-39 \mathrm{~kJ}\) \(\mathrm{Fe}_{3} \mathrm{O}_{4}(s)+\mathrm{CO}(g) \longrightarrow 3 \mathrm{FeO}(s)+\mathrm{CO}_{2}(g) \quad \Delta H^{\circ}=18 \mathrm{~kJ}\) calculate \(\Delta H^{\circ}\) for the reaction $$ \mathrm{FeO}(s)+\mathrm{CO}(g) \longrightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g) $$

Consider an airplane trip from Chicago, Illinois, to Denver, Colorado. List some path-dependent functions and some state functions for the plane trip.

The standard enthalpy of combustion of ethene gas, \(\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\), is \(-1411.1 \mathrm{~kJ} / \mathrm{mol}\) at \(298 \mathrm{~K}\). Given the following enthalpies of formation, calculate \(\Delta H_{\mathrm{f}}^{\circ}\) for \(\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\). $$ \begin{array}{ll} \mathrm{CO}_{2}(g) & -393.5 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{H}_{2} \mathrm{O}(l) & -285.8 \mathrm{~kJ} / \mathrm{mol} \end{array} $$

Consider the following cyclic process carried out in two steps on a gas: Step 1: \(45 \mathrm{~J}\) of heat is added to the gas, and \(10 . \mathrm{J}\) of expansion work is performed. Step \(2: 60 . \mathrm{J}\) of heat is removed from the gas as the gas is compressed back to the initial state. Calculate the work for the gas compression in Step \(2 .\)

Given the following data $$ \begin{aligned} 2 \mathrm{O}_{3}(g) & \longrightarrow 3 \mathrm{O}_{2}(g) & \Delta H &=-427 \mathrm{~kJ} \\ \mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{O}(g) & \Delta H &=495 \mathrm{~kJ} \\ \mathrm{NO}(g)+\mathrm{O}_{3}(g) & \longrightarrow \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) & \Delta H=-199 \mathrm{~kJ} \end{aligned} $$ calculate \(\Delta H\) for the reaction $$ \mathrm{NO}(g)+\mathrm{O}(g) \longrightarrow \mathrm{NO}_{2}(g) $$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free