Given the following data $$ \begin{aligned} \mathrm{P}_{4}(s)+6 \mathrm{Cl}_{2}(g) & \longrightarrow 4 \mathrm{PCl}_{3}(g) & & \Delta H=-1225.6 \mathrm{~kJ} \\ \mathrm{P}_{4}(s)+5 \mathrm{O}_{2}(g) & \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}(s) & & \Delta H=-2967.3 \mathrm{~kJ} \\ \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \longrightarrow \mathrm{PCl}_{5}(g) & & \Delta H=-84.2 \mathrm{~kJ} \\ \mathrm{PCl}_{3}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{Cl}_{3} \mathrm{PO}(g) & & \Delta H=-285.7 \mathrm{~kJ} \end{aligned} $$ calculate \(\Delta H\) for the reaction $$ \mathrm{P}_{4} \mathrm{O}_{10}(s)+6 \mathrm{PCl}_{5}(g) \longrightarrow 10 \mathrm{Cl}_{3} \mathrm{PO}(g) $$

Short Answer

Expert verified
The enthalpy change for the target reaction \(\mathrm{P}_{4}\mathrm{O}_{10}(s) + 6\mathrm{PCl}_{5}(g) \longrightarrow 10\mathrm{Cl}_{3}\mathrm{PO}(g)\) is \(\Delta H = -1620.5 \mathrm{~kJ}\).

Step by step solution

01

Identify the target reaction

The target reaction is given as: \[ \mathrm{P}_{4}\mathrm{O}_{10}(s) + 6 \mathrm{PCl}_{5}(g) \longrightarrow 10 \mathrm{Cl}_{3}\mathrm{PO}(g). \]
02

Manipulate the given reactions

In order to get to the desired reaction, we must find a way to combine the given reactions. To do this, we will manipulate the given reactions accordingly: 1. Reverse the second reaction so that P4O10 is on the left side of the reaction. After reversing, it becomes: \[ \mathrm{P}_{4}\mathrm{O}_{10}(s) \longrightarrow \mathrm{P}_{4}(s) + 5\mathrm{O}_{2}(g), \quad \Delta H = +2967.3 \mathrm{~kJ}. \] Note that the enthalpy change also changes its sign since the reaction is reversed. 2. Multiply the third reaction by 6 so that 6 PCl5 will be on the left side: \[ 6\mathrm{PCl}_{3}(g) + 6\mathrm{Cl}_{2}(g) \longrightarrow 6\mathrm{PCl}_{5}(g), \quad \Delta H = -84.2 \cdot 6 \mathrm{~kJ}. \] 3. Multiply the fourth reaction by 10 so that there will be 10 Cl3PO on the right side of the reaction: \[ 10\mathrm{PCl}_{3}(g) + 5\mathrm{O}_{2}(g) \longrightarrow 10\mathrm{Cl}_{3}\mathrm{PO}(g), \quad \Delta H = -285.7 \cdot 10 \mathrm{~kJ}. \]
03

Combine the manipulated reactions

Add the manipulated reactions together to form the target reaction: \[ \begin{aligned} \cancel{\mathrm{P}_{4}\mathrm{O}_{10}(s)} &\longrightarrow \cancel{\mathrm{P}_{4}(s)} + \cancel{5\mathrm{O}_{2}(g)} \\ \cancel{\mathrm{P}_{4}(s)} + 6\cancel{\mathrm{Cl}_{2}(g)} &\longrightarrow 4\cancel{\mathrm{PCl}_{3}(g)} \\ 6\cancel{\mathrm{PCl}_{3}(g)} + 6\cancel{\mathrm{Cl}_{2}(g)} &\longrightarrow 6\mathrm{PCl}_{5}(g) \\ 10\cancel{\mathrm{PCl}_{3}(g)} + \cancel{5\mathrm{O}_{2}(g)} &\longrightarrow 10\mathrm{Cl}_{3}\mathrm{PO}(g) \\ \hline \mathrm{P}_{4}\mathrm{O}_{10}(s) + 6\mathrm{PCl}_{5}(g) &\longrightarrow 10\mathrm{Cl}_{3}\mathrm{PO}(g) \end{aligned} \]
04

Calculate the enthalpy change of the target reaction

Add up the enthalpy changes of the manipulated reactions to get the enthalpy change for the target reaction: \[ \Delta H_\text{target} = (+2967.3) + (-1225.6) + (-84.2 \cdot 6) + (-285.7 \cdot 10) \mathrm{~kJ}. \] Calculate the numerical value: \[ \Delta H_\text{target} = 2967.3 - 1225.6 - 505.2 - 2857 \mathrm{~kJ} = -1620.5 \mathrm{~kJ}. \] So the enthalpy change for the target reaction is \(\Delta H=-1620.5 \mathrm{~kJ}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The enthalpy of combustion of \(\mathrm{CH}_{4}(g)\) when \(\mathrm{H}_{2} \mathrm{O}(l)\) is formed is \(-891 \mathrm{~kJ} / \mathrm{mol}\) and the enthalpy of combustion of \(\mathrm{CH}_{4}(\mathrm{~g})\) when \(\mathrm{H}_{2} \mathrm{O}(g)\) is formed is \(-803 \mathrm{~kJ} / \mathrm{mol}\). Use these data and Hess's law to determine the enthalpy of vaporization for water.

It takes \(585 \mathrm{~J}\) of energy to raise the temperature of \(125.6 \mathrm{~g}\) mercury from \(20.0^{\circ} \mathrm{C}\) to \(53.5^{\circ} \mathrm{C}\). Calculate the specific heat capacity and the molar heat capacity of mercury.

The complete combustion of acetylene, \(\mathrm{C}_{2} \mathrm{H}_{2}(g)\), produces 1300. kJ of energy per mole of acetylene consumed. How many grams of acetylene must be burned to produce enough heat to raise the temperature of \(1.00\) gal water by \(10.0^{\circ} \mathrm{C}\) if the process is \(80.0 \%\) efficient? Assume the density of water is \(1.00 \mathrm{~g} / \mathrm{cm}^{3}\)

One mole of \(\mathrm{H}_{2} \mathrm{O}(g)\) at \(1.00 \mathrm{~atm}\) and \(100 .{ }^{\circ} \mathrm{C}\) occupies a volume of \(30.6 \mathrm{~L}\). When 1 mole of \(\mathrm{H}_{2} \mathrm{O}(g)\) is condensed to 1 mole of \(\mathrm{H}_{2} \mathrm{O}(l)\) at \(1.00\) atm and \(100 .{ }^{\circ} \mathrm{C}, 40.66 \mathrm{~kJ}\) of heat is released. If the density of \(\mathrm{H}_{2} \mathrm{O}(l)\) at this temperature and pressure is \(0.996 \mathrm{~g} / \mathrm{cm}^{3}\), calculate \(\Delta E\) for the condensation of 1 mole of water at \(1.00 \mathrm{~atm}\) and \(100 .{ }^{\circ} \mathrm{C}\).

The bomb calorimeter in Exercise 106 is filled with \(987 \mathrm{~g}\) water. The initial temperature of the calorimeter contents is \(23.32^{\circ} \mathrm{C}\). A 1.056-g sample of benzoic acid \(\left(\Delta E_{\text {comb }}=-26.42 \mathrm{~kJ} / \mathrm{g}\right.\) ) is combusted in the calorimeter. What is the final temperature of the calorimeter contents?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free