Chapter 8: Problem 71
Use bond energies to estimate \(\Delta H\) for the combustion of one mole of acetylene: $$ \mathrm{C}_{2} \mathrm{H}_{2}(g)+\frac{5}{2} \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) $$
Chapter 8: Problem 71
Use bond energies to estimate \(\Delta H\) for the combustion of one mole of acetylene: $$ \mathrm{C}_{2} \mathrm{H}_{2}(g)+\frac{5}{2} \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite Lewis structures that obey the octet rule for the following species. Assign the formal charge for each central atom. a. \(\mathrm{POCl}_{3}\) e. \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) b. \(\mathrm{SO}_{4}^{2-}\) f. \(\mathrm{XeO}_{4}\) c. \(\mathrm{ClO}_{4}^{-}\) g. \(\mathrm{ClO}_{3}^{-}\) d. \(\mathrm{PO}_{4}^{3-}\) h. \(\mathrm{NO}_{4}^{3-}\)
Arrange the atoms and/or ions in the following groups in order of decreasing size. a. \(\mathrm{O}, \mathrm{O}^{-}, \mathrm{O}^{2-}\) b. \(\mathrm{Fe}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}\) c. \(\mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}\)
Combustion reactions of fossil fuels provide most of the energy needs of the world. Why are combustion reactions of fossil fuels so exothermic?
Some plant fertilizer compounds are \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\), \(\mathrm{K}_{2} \mathrm{O}, \mathrm{P}_{2} \mathrm{O}_{5}\), and \(\mathrm{KCl}\). Which of these compounds contain both ionic and covalent bonds?
Use the following data (in \(\mathrm{kJ} / \mathrm{mol}\) ) to estimate \(\Delta H\) for the reaction \(\mathrm{S}^{-}(g)+\mathrm{e}^{-} \rightarrow \mathrm{S}^{2-}(g)\). Include an estimate of uncertainty. $$ \begin{array}{cl} \mathrm{S}(s) \longrightarrow \mathrm{S}(g) & \Delta H=277 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{S}(g)+\mathrm{e}^{-} \longrightarrow \mathrm{S}^{-}(g) & \Delta H=-200 \mathrm{~kJ} / \mathrm{mol} \end{array} $$ Assume that all values are known to \(\pm 1 \mathrm{~kJ} / \mathrm{mol}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.