Write the solubility constant expression, \(K_{\mathrm{sp}}\), for each reaction below. a) \(\mathrm{AgCl}(\mathrm{s}) \rightleftarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\) b) \(\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s}) \rightleftarrows 3 \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{PO}_{4}^{3-}(\mathrm{aq})\) c) \(\mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightleftarrows 2 \mathrm{Li}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-(\mathrm{aq})}\)

Short Answer

Expert verified
The expressions for the solubility product constant, \(K_{sp}\), are as follows: For \(AgCl(s)\), \(K_{sp} = [Ag^{+}][Cl^{-}]\). For \(Cu_{3}(PO_{4})_{2}(s)\), \(K_{sp} = [Cu^{2+}]^{3}[PO_{4}^{3-}]^{2}\). For \(Li_{2}CO_{3}(s)\), \(K_{sp} = [Li^{+}]^{2}[CO_{3}^{2-}]\).

Step by step solution

01

Expressions for AgCI

Start by writing the solubility constant expression for the given reaction: \(AgCl(s) \rightleftarrows Ag^{+}(aq) + Cl^{-}(aq)\). Only the ions in the solution contribute to the \(K_{sp}\) expression. Therefore, the solubility product constant expression is: \(K_{sp} = [Ag^{+}][Cl^{-}]\)
02

Expressions for Cu3(PO4)2

Now write the \(K_{sp}\) expression for: \(Cu_{3}(PO_{4})_{2}(s) \rightleftarrows 3Cu^{2+}(aq) + 2PO_{4}^{3-}(aq)\). The solubility product constant expression will be: \(K_{sp} = [Cu^{2+}]^{3}[PO_{4}^{3-}]^{2}\). The exponents in the expression come from the stoichiometric coefficients in the balanced chemical equation.
03

Expressions for Li2CO3

Finally, write the \(K_{sp}\) expression for: \(Li_{2}CO_{3}(s) \rightleftarrows 2Li^{+}(aq) + CO_{3}^{2-}(aq)\). The solubility product constant expression will be: \(K_{sp} = [Li^{+}]^{2}[CO_{3}^{2-}]\). Here the exponents also come from the stoichiometric coefficients in the balanced chemical equation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free