Calculate the \(\mathrm{pH}\) of a \(0.10-M \mathrm{CoCl}_{3}\) solution. The \(K_{\mathrm{a}}\) value for \(\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\) is \(1.0 \times 10^{-5}\)

Short Answer

Expert verified
The pH of the 0.10 M \(\mathrm{CoCl}_3\) solution can be calculated by considering the hydrolysis of \(\mathrm{Co}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}^{3+}\) ions. The balanced equation for this reaction is \(\mathrm{Co}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}^{3+} \left(aq\right) + \mathrm{H}_{2}\mathrm{O} \left(l\right) \rightleftarrows \mathrm{Co}\left(\mathrm{H}_{2}\mathrm{O}\right)_{5}\left(\mathrm{OH}\right)^{2+} \left(aq\right) + \mathrm{H_{3}O}^{+} \left(aq\right)\). Using the given \(K_{\mathrm{a}}\) value of \(1.0 \times 10^{-5}\) and assuming that \(x << 0.10\mathrm{M}\), we can approximate the concentration of \(\mathrm{H}^{+}\) ions as \(1.0 \times 10^{-3}\mathrm{M}\). Therefore, the pH of the solution is approximately 3.00.

Step by step solution

01

Write the balanced equation for the reaction

First, we need to recognize that the \(\mathrm{Co}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}^{3+}\) ions undergo hydrolysis in the solution, which means they react with water to release \(\mathrm{H}^{+}\) ions. The balanced equation for this reaction is: \[\mathrm{Co}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}^{3+} \left(aq\right) + \mathrm{H}_{2}\mathrm{O} \left(l\right) \rightleftarrows \mathrm{Co}\left(\mathrm{H}_{2}\mathrm{O}\right)_{5}\left(\mathrm{OH}\right)^{2+} \left(aq\right) + \mathrm{H_{3}O}^{+} \left(aq\right)\]
02

Set up and solve the equilibrium expression

Now we need to set up the equilibrium expression for the reaction, using the given \(K_{\mathrm{a}}\) value: \[K_{\mathrm{a}} = \dfrac{[\mathrm{Co}\left(\mathrm{H}_{2}\mathrm{O}\right)_{5}\left(\mathrm{OH}\right)^{2+}][\mathrm{H_{3}O}^{+}]}{[\mathrm{Co}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}^{3+}]}\] Since we're given the initial concentration of \(\mathrm{CoCl}_{3}\) (which is the same as the initial concentration of \(\mathrm{Co}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}^{3+}\)), we can solve for the equilibrium concentration of \(\mathrm{H}^{+}\) ions. Let's call this concentration \(x\). At equilibrium, the concentrations are as follows: \([\mathrm{Co}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}^{3+}] = 0.10 \mathrm{M} - x\) \([\mathrm{Co}\left(\mathrm{H}_{2}\mathrm{O}\right)_{5}\left(\mathrm{OH}\right)^{2+}] = x\) \([\mathrm{H_{3}O}^{+}] = x\) Now substitute these values into the equilibrium expression: \[1.0 \times 10^{-5} = \dfrac{x^2}{0.10\mathrm{M} - x}\] We can simplify this expression by assuming that the amount of dissociation is small and \(x << 0.10\mathrm{M}\). Therefore, we can approximate that \(0.10\mathrm{M} - x \approx 0.10\mathrm{M}\). So, \[1.0 \times 10^{-5} \approx \dfrac{x^2}{0.10\mathrm{M}}\] Now, we can solve for \(x\). \[x = \sqrt{1.0 \times 10^{-5} \times 0.10\mathrm{M}} \approx 1.0 \times 10^{-3}\mathrm{M}\]
03

Calculate the pH

Now that we have calculated the concentration of \(\mathrm{H}^{+}\) ions in the solution, we can use this value to calculate the pH: \[pH = -\log{[\mathrm{H}^{+}]}\] \[pH = -\log{(1.0 \times 10^{-3}\mathrm{M})} \approx 3.00\] Hence, the pH of the 0.10 M \(\mathrm{CoCl}_3\) solution is approximately 3.00.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free