Chapter 13: Problem 28
Derive an expression for the relationship between \(\mathrm{p} K_{\mathrm{a}}\) and \(\mathrm{p} K_{\mathrm{b}}\) for a conjugate acid-base pair. \((p K=-\log K .)\)
Chapter 13: Problem 28
Derive an expression for the relationship between \(\mathrm{p} K_{\mathrm{a}}\) and \(\mathrm{p} K_{\mathrm{b}}\) for a conjugate acid-base pair. \((p K=-\log K .)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe equilibrium constant \(K_{\mathrm{a}}\) for the reaction $$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons{\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}}(\mathrm{OH})^{2+}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$$ is \(6.0 \times 10^{-3}\) a. Calculate the \(\mathrm{pH}\) of a \(0.10-M\) solution of \(\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\) b. Will a \(1.0-M\) solution of iron(II) nitrate have a higher or lower \(\mathrm{pH}\) than a \(1.0-M\) solution of iron(III) nitrate? Explain.
Write the reaction and the corresponding \(K_{\mathrm{b}}\) equilibrium expression for each of the following substances acting as bases in water. a. \(\mathrm{NH}_{3}\) b. \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{N}\)
What are the major species present in 0.250 \(M\) solutions of each of the following acids? Calculate the pH of each of these solutions. a. \(\mathrm{HNO}_{2}\) b. \(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\)
Zinc hydroxide is an amphoteric substance. Write equations that describe \(\mathrm{Zn}(\mathrm{OH})_{2}\) acting as a Brönsted-Lowry base toward \(\mathrm{H}^{+}\) and as a Lewis acid toward \(\mathrm{OH}^{-}\).
Calculate the \(\mathrm{pH}\) of a \(0.200-M\) solution of \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NHF}\). Hint: \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NHF}\) is a salt composed of \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\) and \(\mathrm{F}^{-}\) ions. The principal equilibrium in this solution is the best acid reacting with the best base; the reaction for the principal equilibrium is $$\begin{aligned} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(a q)+\mathrm{F}^{-}(a q) & \rightleftharpoons \\ \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{N}(a q) &+\mathrm{HF}(a q) \quad K=8.2 \times 10^{-3}\end{aligned}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.