A solution is prepared by dissolving 0.56 g benzoic acid \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}, K_{\mathrm{a}}=6.4 \times 10^{-5}\right)\) in enough water to make \(1.0 \mathrm{L}\) of solution. Calculate \(\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right],\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right],\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]\) and the pH of this solution.

Short Answer

Expert verified
In the solution, the concentrations of the species are approximately as follows: \(\left[\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}\mathrm{H}\right] \approx 0.00458\, \mathrm{M}\), \(\left[\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}^{-}\right] \approx 7.4 \times 10^{-6}\, \mathrm{M}\), \(\left[\mathrm{H}^{+}\right] \approx 7.4 \times 10^{-6}\, \mathrm{M}\), and \(\left[\mathrm{OH}^{-}\right] \approx 1.35 \times 10^{-9}\, \mathrm{M}\). The pH of the solution is approximately 5.13.

Step by step solution

01

Calculate initial concentration of benzoic acid

: We'll first calculate the initial concentration of benzoic acid \([\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}\mathrm{H}]\). To do this, we need to convert the grams of benzoic acid to moles and then divide by the volume of the solution. The molar mass of \(\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}\mathrm{H}\) is \(12 \times 7 + 6 \times 6 + 16 \times 2 = 122\) g/mol. Therefore, the initial concentration of \(\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}\mathrm{H}\) is: \[\frac{0.56 \, \mathrm{g}}{122\, \mathrm{g/mol}} \cdot \frac{1}{1.0\, \mathrm{L}} = 0.00459\, \mathrm{M}\]
02

Write the equilibrium expression

: Next, we'll write the ionization equilibrium for benzoic acid as follows: \[\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}\mathrm{H} \longleftrightarrow \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}^{-} + \mathrm{H}^{+}\] The equilibrium constant expression for this reaction is: \[K_a = \frac{[\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}^{-}][\mathrm{H}^{+}]}{[\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}\mathrm{H}]}\]
03

Assumptions and equation for \([\mathrm{H}^+]\)

: We'll assume that the initial concentration of benzoic acid is approximately equal to the equilibrium concentration. With this assumption, we can now write the equation for the concentrations of the species in terms of \(x\), where \(x\) is the concentration of \(\mathrm{H}^{+}\): \([\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}\mathrm{H}] = 0.00459 - x\) \([\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}^{-}] = x\) \([\mathrm{H}^{+}] = x\) Substituting these expressions into the equilibrium constant equation and solving for \(x\): \(K_a = \frac{x^2}{0.00459 - x}\) \(6.4 \times 10^{-5} = \frac{x^2}{0.00459 - x}\)
04

Calculate concentrations of benzoic acid, benzoate ion, and hydroxide ion

: Now, we solve for \(x\) to get the concentration of \(\mathrm{H}^{+}\): \(x^2 + 6.4 \times 10^{-5}x - 0.00459 \times 6.4 \times 10^{-5} = 0\) We can disregard the negative root and solve for the positive root to get \(x \approx 7.4 \times 10^{-6}\): \([\mathrm{H}^{+}] \approx 7.4 \times 10^{-6}\, \mathrm{M}\) Now, we can find the other concentrations: \([\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}\mathrm{H}] \approx 0.00459 - 7.4\times10^{-6} \approx 0.00458\, \mathrm{M}\) \([\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}^{-}] \approx 7.4 \times 10^{-6}\, \mathrm{M}\) Lastly, we'll calculate the concentration of hydroxide ions, \([\mathrm{OH}^{-}]\), using the ion product of water: \(K_w = [\mathrm{H}^{+}][\mathrm{OH}^{-}]\) \(1.0 \times 10^{-14} = (7.4 \times 10^{-6})[\mathrm{OH}^{-}]\) \([\mathrm{OH}^{-}] \approx 1.35 \times 10^{-9}\, \mathrm{M}\)
05

Calculate the pH of the solution

: Finally, we'll calculate the pH of the solution using the equation pH = \(- \log [\mathrm{H}^{+}]\): pH \(\approx -\log(7.4 \times 10^{-6}) \approx 5.13\) The concentrations of the species in the solution are approximately as follows: \(\left[\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}\mathrm{H}\right] \approx 0.00458\, \mathrm{M}\), \(\left[\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}^{-}\right] \approx 7.4 \times 10^{-6}\, \mathrm{M}\), \(\left[\mathrm{H}^{+}\right] \approx 7.4 \times 10^{-6}\, \mathrm{M}\), and \(\left[\mathrm{OH}^{-}\right] \approx 1.35 \times 10^{-9}\, \mathrm{M}\). The pH of the solution is approximately 5.13.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the \(\mathrm{pH}\) of a \(0.050-M\) Al(NO_3)a solution. The \(K_{\mathrm{a}}\) value for \(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\) is \(1.4 \times 10^{-5}\).

The pH of \(1.0 \times 10^{-8} M\) hydrochloric acid is not \(8.00 .\) The correct \(\mathrm{pH}\) can be calculated by considering the relationship between the molarities of the three principal ions in the solution \(\left(\mathrm{H}^{+}, \mathrm{Cl}^{-}, \text {and } \mathrm{OH}^{-}\right) .\) These molarities can be calculated from algebraic equations that can be derived from the considerations given below. a. The solution is electrically neutral. b. The hydrochloric acid can be assumed to be \(100 \%\) ionized. c. The product of the molarities of the hydronium ions and the hydroxide ions must equal \(K_{\mathrm{w}}\) Calculate the \(\mathrm{pH}\) of a \(1.0 \times 10^{-8}-M\) HCl solution.

Place the species in each of the following groups in order of increasing acid strength. a. \(\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{S}, \mathrm{H}_{2} \mathrm{Se}\) (bond energies: \(\mathrm{H}-\mathrm{O}, 467 \mathrm{kJ} / \mathrm{mol}\); \(\mathrm{H}-\mathrm{S}, 363 \mathrm{kJ} / \mathrm{mol} ; \mathrm{H}-\mathrm{Se}, 276 \mathrm{kJ} / \mathrm{mol})\) b. \(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{F}_{2} \mathrm{CHCO}_{2} \mathrm{H}, \mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}\) c. \(\mathrm{NH}_{4}^{+}, \mathrm{HONH}_{3}^{+}\) d. \(\mathrm{NH}_{4}^{+}, \mathrm{PH}_{4}^{+}\) (bond energies: \(\mathrm{N}-\mathrm{H}, 391 \mathrm{kJ} / \mathrm{mol} ; \mathrm{P}-\mathrm{H}\) \(322 \mathrm{kJ} / \mathrm{mol})\) Give reasons for the orders you chose.

Rank the following 0.10 \(M\) solutions in order of increasing pH. a. \(\mathrm{NH}_{3}\) b. KOH c. \(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\) d. KCl e. HCl

Calculate the \(\mathrm{pH}\) of a \(0.20-M \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\) solution \(\left(K_{\mathrm{b}}=\right.\) \(\left.5.6 \times 10^{-4}\right)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free