Write balanced equations for the dissolution reactions and the corresponding solubility product expressions for each of the following solids. a. \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\) b. \(\mathrm{Al}(\mathrm{OH})_{3}\) c. \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\)

Short Answer

Expert verified
a. Dissolution reaction: \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq}) + \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})\); \(K_{sp} = [\mathrm{Ag}^{+}][\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}]\) b. Dissolution reaction: \(\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{s}) \rightleftharpoons \mathrm{Al}^{3+}(\mathrm{aq}) + 3\mathrm{OH}^{-}(\mathrm{aq})\); \(K_{sp} = [\mathrm{Al}^{3+}][\mathrm{OH}^{-}]^{3}\) c. Dissolution reaction: \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{s}) \rightleftharpoons 3\mathrm{Ca}^{2+}(\mathrm{aq}) + 2\mathrm{PO}_{4}^{3-}(\mathrm{aq})\); \(K_{sp} = [\mathrm{Ca}^{2+}]^{3}[\mathrm{PO}_{4}^{3-}]^{2}\)

Step by step solution

01

Write the balanced dissolution reaction

For each solid, write down the balanced dissolution reaction. This involves breaking up the solid into its constituent ions. a. For \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\), \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq}) + \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})\) b. For \(\mathrm{Al}(\mathrm{OH})_{3}\), \(\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{s}) \rightleftharpoons \mathrm{Al}^{3+}(\mathrm{aq}) + 3\mathrm{OH}^{-}(\mathrm{aq})\) c. For \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\), \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{s}) \rightleftharpoons 3\mathrm{Ca}^{2+}(\mathrm{aq}) + 2\mathrm{PO}_{4}^{3-}(\mathrm{aq})\)
02

Write the solubility product expressions

For each balanced dissolution reaction, write the solubility product expression, \(K_{sp}\), as the product of the concentration of its constituent ions raised to their respective stoichiometric coefficients in the balanced dissolution reaction. a. For \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\), \(K_{sp} = [\mathrm{Ag}^{+}][\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}]\) b. For \(\mathrm{Al}(\mathrm{OH})_{3}\), \(K_{sp} = [\mathrm{Al}^{3+}][\mathrm{OH}^{-}]^{3}\) c. For \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\), \(K_{sp} = [\mathrm{Ca}^{2+}]^{3}[\mathrm{PO}_{4}^{3-}]^{2}\) These expressions represent the solubility product constants for the given solids. Each term shows the product of concentrations of the ions in the dissolution reaction raised to their stoichiometric coefficients, which can be used to quantify the solubility of these solids in water.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Aluminum ions react with the hydroxide ion to form the precipitate \(\mathrm{Al}(\mathrm{OH})_{3}(s),\) but can also react to form the soluble complex ion \(\mathrm{Al}(\mathrm{OH})_{4}^{-} .\) In terms of solubility, \(\mathrm{Al}(\mathrm{OH})_{3}(s)\) will be more soluble in very acidic solutions as well as more soluble in very basic solutions. a. Write equations for the reactions that occur to increase the solubility of \(\mathrm{Al}(\mathrm{OH})_{3}(s)\) in very acidic solutions and in very basic solutions. b. Let's study the \(\mathrm{pH}\) dependence of the solubility of Al(OH) \(_{3}(s)\) in more detail. Show that the solubility of \(\mathrm{Al}(\mathrm{OH})_{3},\) as a function of \(\left[\mathrm{H}^{+}\right],\) obeys the equation $$ S=\left[\mathbf{H}^{+}\right]^{3} K_{\mathrm{sp}} / K_{\mathrm{w}}^{3}+K K_{\mathrm{w}} /\left[\mathrm{H}^{+}\right] $$ where \(S=\) solubility \(=\left[\mathrm{Al}^{3+}\right]+\left[\mathrm{Al}(\mathrm{OH})_{4}^{-}\right]\) and \(K\) is the equilibrium constant for $$ \mathrm{Al}(\mathrm{OH})_{3}(s)+\mathrm{OH}^{-}(a q) \rightleftharpoons \mathrm{Al}(\mathrm{OH})_{4}^{-}(a q) $$ c. The value of \(K\) is 40.0 and \(K_{\mathrm{sp}}\) for \(\mathrm{Al}(\mathrm{OH})_{3}\) is \(2 \times 10^{-32}\) Plot the solubility of \(\mathrm{Al}(\mathrm{OH})_{3}\) in the pH range \(4-12\).

A 50.0 -mL sample of \(0.00200\) \(M\) \(\mathrm{AgNO}_{3}\) is added to \(50.0 \mathrm{mL}\) of 0.0100 \(M \mathrm{NaIO}_{3} .\) What is the equilibrium concentration of \(\mathrm{Ag}^{+}\) in solution? \(\left(K_{\mathrm{sp}} \text { for } \mathrm{AgIO}_{3} \text { is } 3.0 \times 10^{-8} .\right)\)

Calculate the final concentrations of \(\mathrm{K}^{+}(a q), \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q)\),\(\mathrm{Ba}^{2+}(a q),\) and \(\mathrm{Br}^{-}(a q)\) in a solution prepared by adding \(0.100 \mathrm{L}\) of \(0.200 M \mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) to \(0.150 \mathrm{L}\) of \(0.250 M \mathrm{BaBr}_{2}\). (For \(\left.\mathrm{BaC}_{2} \mathrm{O}_{4}, K_{\mathrm{sp}}=2.3 \times 10^{-8} .\right)\)

Write equations for the stepwise formation of each of the following complex ions. a. \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\) b. \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}^{3-}\)

Calculate the molar solubility of \(\mathrm{Cd}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=5.9 \times 10^{-11}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free