Write balanced equations for the dissolution reactions and the corresponding solubility product expressions for each of the following solids. a. \(\mathrm{Ag}_{2} \mathrm{CO}_{3}\) b. \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}\) c. \(\mathrm{BaF}_{2}\)

Short Answer

Expert verified
\(a. \mathrm{Ag}_{2}\mathrm{CO}_{3}\left(s\right) \longleftrightarrow 2\mathrm{Ag}^{+}\left(aq\right) + \mathrm{CO}_{3}^{2-}\left(aq\right)\), \(\mathrm{K}_{sp} = [\mathrm{Ag}^{+}]^2[\mathrm{CO}_{3}^{2-}]\) \(b. \mathrm{Ce}\left(\mathrm{IO}_{3}\right)_3\left(s\right) \longleftrightarrow \mathrm{Ce}^{3+}\left(aq\right) + 3\mathrm{IO}_3^-\left(aq\right)\), \(\mathrm{K}_{sp} = [\mathrm{Ce}^{3+}][\mathrm{IO}_{3}^{-}]^3\) \(c. \mathrm{BaF}_{2}\left(s\right) \longleftrightarrow \mathrm{Ba}^{2+}\left(aq\right) + 2\mathrm{F}^{-}\left(aq\right)\), \(\mathrm{K}_{sp} = [\mathrm{Ba}^{2+}][\mathrm{F}^{-}]^2\)

Step by step solution

01

a. Solve for Silver Carbonate (\(\mathrm{Ag}_{2} \mathrm{CO}_{3}\))

Step 1: Write the dissociation/dissolution reaction of the given solid. Silver Carbonate will dissociate into Silver ions and Carbonate ions: \(\mathrm{Ag}_{2}\mathrm{CO}_{3}\left(s\right) \longleftrightarrow 2\mathrm{Ag}^{+}\left(aq\right) + \mathrm{CO}_{3}^{2-}\left(aq\right)\) Step 2: Write the solubility product expression. The solubility product expression for Silver Carbonate is: \(\mathrm{K}_{sp} = [\mathrm{Ag}^{+}]^2[\mathrm{CO}_{3}^{2-}]\)
02

b. Solve for Cerium(III) Iodate (\(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}\))

Step 1: Write the dissociation/dissolution reaction of the given solid. Cerium(III) Iodate dissociates into Cerium ions and Iodate ions: \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_3\left(s\right) \longleftrightarrow \mathrm{Ce}^{3+}\left(aq\right) + 3\mathrm{IO}_3^-\left(aq\right)\) Step 2: Write the solubility product expression. The solubility product expression for Cerium(III) Iodate is: \(\mathrm{K}_{sp} = [\mathrm{Ce}^{3+}][\mathrm{IO}_{3}^{-}]^3\)
03

c. Solve for Barium Fluoride (\(\mathrm{BaF}_{2}\))

Step 1: Write the dissociation/dissolution reaction of the given solid. Barium Fluoride dissociates into Barium ions and Fluoride ions: \(\mathrm{BaF}_{2}\left(s\right) \longleftrightarrow \mathrm{Ba}^{2+}\left(aq\right) + 2\mathrm{F}^{-}\left(aq\right)\) Step 2: Write the solubility product expression. The solubility product expression for Barium Fluoride is: \(\mathrm{K}_{sp} = [\mathrm{Ba}^{2+}][\mathrm{F}^{-}]^2\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What mass of ZnS \(\left(K_{\mathrm{sp}}=2.5 \times 10^{-22}\right)\) will dissolve in \(300.0 \mathrm{mL}\) of \(0.050 \mathrm{M} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} ?\) Ignore the basic properties of \(\mathrm{S}^{2-}\).

A solution contains \(1.0 \times 10^{-5} M \mathrm{Ag}^{+}\) and \(2.0 \times 10^{-6} M \mathrm{CN}^{-}\) Will AgCN( \(s\) ) precipitate? \(\left(K_{\mathrm{sp}} \text { for } \mathrm{AgCN}(s) \text { is } 2.2 \times 10^{-12} .\right)\)

Calculate the molar solubility of \(\mathrm{Mg}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=8.9 \times 10^{-12}\).

Calculate the concentration of \(\mathrm{Pb}^{2+}\) in each of the following. a. a saturated solution of \(\mathrm{Pb}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=1.2 \times 10^{-15}\) b. a saturated solution of \(\mathrm{Pb}(\mathrm{OH})_{2}\) buffered at \(\mathrm{pH}=13.00\) c. Ethylenediaminetetraacetate (EDTA \(^{4-}\) ) is used as a complexing agent in chemical analysis and has the following structure: Solutions of EDTA \(^{4-}\) are used to treat heavy metal poisoning by removing the heavy metal in the form of a soluble complex ion. The reaction of EDTA \(^{4-}\) with \(\mathrm{Pb}^{2+}\) is $$\begin{aligned} \mathrm{Pb}^{2+}(a q)+\mathrm{EDTA}^{4-}(a q) \rightleftharpoons \mathrm{PbEDTA}^{2-}(a q) & \\ K &=1.1 \times 10^{18} \end{aligned}$$ Consider a solution with 0.010 mole of \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) added to \(1.0 \mathrm{L}\) of an aqueous solution buffered at \(\mathrm{pH}=13.00\) and containing 0.050 \(M\) \(\mathrm{Na}_{4} \mathrm{EDTA}\). Does \(\mathrm{Pb}(\mathrm{OH})_{2}\) precipitate from this solution?

The solubility of \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}\) in a \(0.20-M\) KIO \(_{3}\) solution is \(4.4 \times 10^{-8} \mathrm{mol} / \mathrm{L} .\) Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free