For each of the following pairs of solids, determine which solid has the smallest molar solubility. a. \(\mathrm{FeC}_{2} \mathrm{O}_{4}, K_{\mathrm{sp}}=2.1 \times 10^{-7},\) or \(\mathrm{Cu}\left(\mathrm{IO}_{4}\right)_{2}, K_{\mathrm{sp}}=1.4 \times 10^{-7}\) b. \(\mathrm{Ag}_{2} \mathrm{CO}_{3}, K_{\mathrm{sp}}=8.1 \times 10^{-12},\) or \(\mathrm{Mn}(\mathrm{OH})_{2}\) \(K_{\mathrm{sp}}=2 \times 10^{-13}\)

Short Answer

Expert verified
For the given pairs of solids, FeC2O4 has a smaller molar solubility than Cu(IO₄)₂, and Mn(OH)₂ has a smaller molar solubility than Ag₂CO₃. Therefore, the solids with the smallest molar solubilities are FeC2O4 and Mn(OH)₂.

Step by step solution

01

Balanced chemical equation for FeC2O4

$$\mathrm{FeC}_{2}\mathrm{O}_{4(s)} \rightleftharpoons \mathrm{Fe^{2+}_{(aq)}} + 2 \mathrm{C}_{2}\mathrm{O}_{4^{2-}_{(aq)}}$$ Step 2: Set up the Ksp expression
02

Ksp expression for FeC2O4

Let the molar solubility of FeC2O4 be 's' Then, we have Ksp = [Fe²⁺][C₂O₄²⁻]² = (s)(2s)² Step 3: Calculate molar solubility 's'
03

Calculate molar solubility of FeC2O4

Given, Ksp = 2.1 x 10⁻⁷ (2.1 x 10⁻⁷) = s*(2s)² Solve for 's' which is approximately 4.91 x 10⁻³ M 2) Cu(IO₄)₂ Step 1: Write the balanced chemical equation for the dissolution
04

Balanced chemical equation for Cu(IO₄)₂

$$\mathrm{Cu}(\mathrm{IO}_{4})_{ 2(s)} \rightleftharpoons \mathrm{Cu^{2+}_{(aq)}} + 2 \mathrm{IO}_{4^{-}_{(aq)}}$$ Step 2: Set up the Ksp expression
05

Ksp expression for Cu(IO₄)₂

Let the molar solubility of Cu(IO₄)₂ be 's' Then, we have Ksp = [Cu²⁺][IO₄⁻]² = (s)(2s)² Step 3: Calculate molar solubility 's'
06

Calculate molar solubility of Cu(IO₄)₂

Given, Ksp = 1.4 x 10⁻⁷ (1.4 x 10⁻⁷) = s*(2s)² Solve for 's' which is approximately 5.04 x 10⁻³ M
07

Compare the molar solubility of FeC2O4 and Cu(IO₄)₂

Molar solubility of FeC2O4: 4.91 x 10⁻³ M Molar solubility of Cu(IO₄)₂: 5.04 x 10⁻³ M FeC2O4 has a smaller molar solubility than Cu(IO₄)₂. b. We have two solids: 1) Ag₂CO₃ Step 1: Write the balanced chemical equation for the dissolution
08

Balanced chemical equation for Ag₂CO₃

$$\mathrm{Ag}_{2}\mathrm{CO}_{3(s)} \rightleftharpoons 2 \mathrm{Ag^{+}_{(aq)}} + \mathrm{CO}_{3^{2-}_{(aq)}}$$ Step 2: Set up the Ksp expression
09

Ksp expression for Ag₂CO₃

Let the molar solubility of Ag₂CO₃ be 's' Then, we have Ksp = [Ag⁺]²[CO₃²⁻] = (2s)²(s) Step 3: Calculate molar solubility 's'
10

Calculate molar solubility of Ag₂CO₃

Given, Ksp = 8.1 x 10⁻¹² (8.1 x 10⁻¹²) = (2s)²(s) Solve for 's' which is approximately 9.45 x 10⁻⁵ M 2) Mn(OH)₂ Step 1: Write the balanced chemical equation for the dissolution
11

Balanced chemical equation for Mn(OH)₂

$$\mathrm{Mn}(\mathrm{OH})_{2(s)} \rightleftharpoons \mathrm{Mn^{2+}_{(aq)}} + 2 \mathrm{OH^{-}_{(aq)}}$$ Step 2: Set up the Ksp expression
12

Ksp expression for Mn(OH)₂

Let the molar solubility of Mn(OH)₂ be 's' Then, we have Ksp = [Mn²⁺][OH⁻]² = (s)(2s)² Step 3: Calculate molar solubility 's'
13

Calculate molar solubility of Mn(OH)₂

Given, Ksp = 2 x 10⁻¹³ (2 x 10⁻¹³) = s*(2s)² Solve for 's' which is approximately 6.48 x 10⁻⁵ M
14

Compare the molar solubility of Ag₂CO₃ and Mn(OH)₂

Molar solubility of Ag₂CO₃: 9.45 x 10⁻⁵ M Molar solubility of Mn(OH)₂: 6.48 x 10⁻⁵ M Mn(OH)₂ has a smaller molar solubility than Ag₂CO₃. So the solids with smaller molar solubilities are FeC2O4 and Mn(OH)₂.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When \(\mathrm{Na}_{3} \mathrm{PO}_{4}(a q)\) is added to a solution containing a metal ion and a precipitate forms, the precipitate generally could be one of two possibilities. What are the two possibilities?

The \(\mathrm{Hg}^{2+}\) ion forms complex ions with \(\mathrm{I}^{-}\) as follows: $$\begin{aligned} \mathrm{Hg}^{2+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}^{+}(a q) & & K_{1}=1.0 \times 10^{8} \\ \mathrm{HgI}^{+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{2}(a q) & & K_{2}=1.0 \times 10^{5} \\ \mathrm{HgI}_{2}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{3}^{-}(a q) & & K_{3}=1.0 \times 10^{9} \\ \mathrm{HgI}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{4}^{2-}(a q) & & K_{4}=1.0 \times 10^{8} \end{aligned}$$ A solution is prepared by dissolving 0.088 mole of \(\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}\) and 5.00 moles of NaI in enough water to make 1.0 L of solution. a. Calculate the equilibrium concentration of \(\left[\mathrm{HgI}_{4}^{2-}\right] .\) b. Calculate the equilibrium concentration of \(\left[\mathrm{I}^{-}\right] .\) c. Calculate the equilibrium concentration of \(\left[\mathrm{Hg}^{2+}\right]\).

$$K=\frac{\left[\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}^{2-}\right]}{\left[\mathrm{Mn}^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]^{2}}$$

A solution contains \(1.0 \times 10^{-5} M \mathrm{Na}_{3} \mathrm{PO}_{4} .\) What is the minimum concentration of \(\mathrm{AgNO}_{3}\) that would cause precipitation of solid \(\mathrm{Ag}_{3} \mathrm{PO}_{4}\left(K_{\mathrm{sp}}=1.8 \times 10^{-18}\right) ?\)

Calculate the solubility of each of the following compounds in moles per liter. Ignore any acid-base properties. a. \(\mathrm{PbI}_{2}, K_{\mathrm{sp}}=1.4 \times 10^{-8}\) b. \(\mathrm{CdCO}_{3}, K_{\mathrm{sp}}=5.2 \times 10^{-12}\) c. \(\operatorname{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}, K_{\mathrm{sp}}=1 \times 10^{-31}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free