Chapter 15: Problem 42
Calculate the solubility of solid \(\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(K_{\mathrm{sp}}=1 \times 10^{-54}\right)\) in a \(0.10-M \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) solution.
Chapter 15: Problem 42
Calculate the solubility of solid \(\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(K_{\mathrm{sp}}=1 \times 10^{-54}\right)\) in a \(0.10-M \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) solution.
All the tools & learning materials you need for study success - in one app.
Get started for freea. Calculate the molar solubility of \(\operatorname{Sr} \mathrm{F}_{2}\) in water, ignoring the basic properties of \(\left.\mathrm{F}^{-} . \text {(For } \operatorname{Sr} \mathrm{F}_{2}, K_{\mathrm{sp}}=7.9 \times 10^{-10} .\right)\). b. Would the measured molar solubility of \(\operatorname{Sr} \mathrm{F}_{2}\) be greater than or less than the value calculated in part a? Explain. c. Calculate the molar solubility of \(\operatorname{Sr} \mathrm{F}_{2}\) in a solution buffered at \(\mathrm{pH}=2.00 .\left(K_{\mathrm{a}} \text { for } \mathrm{HF} \text { is } 7.2 \times 10^{-4} .\right)\).
The solubility of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\) in a \(7.2 \times 10^{-2}-M \mathrm{KIO}_{3}\) solution is \(6.0 \times 10^{-9} \mathrm{mol} / \mathrm{L} .\) Calculate the \(K_{\mathrm{sp}}\) value for \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\).
The \(K_{\mathrm{sp}}\) for lead iodide \(\left(\mathrm{PbI}_{2}\right)\) is \(1.4 \times 10^{-8} .\) Calculate the solubility of lead iodide in each of the following. a. water b. \(0.10 M \operatorname{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) c. \(0.010 M\) NaI
Assuming that the solubility of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)\) is \(1.6 \times 10^{-7}\) \(\operatorname{mol} / \mathrm{L}\) at \(25^{\circ} \mathrm{C},\) calculate the \(K_{\mathrm{sp}}\) for this salt. Ignore any potential reactions of the ions with water.
A solution is prepared by adding 0.10 mole of \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{2}\) to \(0.50 \mathrm{L}\) of \(3.0 M \mathrm{NH}_{3} .\) Calculate \(\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]\) and \(\left[\mathrm{Ni}^{2+}\right]\) in this solution. \(K_{\text {overall }}\) for \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\) is \(5.5 \times 10^{8} .\) That is, $$5.5 \times 10^{8}=\frac{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]}{\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{6}}$$ for the overall reaction $$ \mathrm{Ni}^{2+}(a q)+6 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}(a q) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.