Calculate the solubility of solid \(\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(K_{\mathrm{sp}}=1 \times 10^{-54}\right)\) in a \(0.10-M \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) solution.

Short Answer

Expert verified
The solubility of solid \(\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) in a \(0.10-M \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) solution is approximately \(1.7 \times 10^{-18}\: M\).

Step by step solution

01

Write the balanced chemical equation

The balanced chemical equation for the dissociation of \(\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) is: \[\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s) \rightleftharpoons 3\mathrm{Pb}^{2+}(aq) + 2\mathrm{PO}_{4}^{3-}(aq)\]
02

Write the expression for the \(K_{sp}\)

The \(K_{sp}\) expression for the dissolution of \(\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)\) is: \[K_{sp} = [\mathrm{Pb}^{2+}]^3[\mathrm{PO}_{4}^{3-}]^2\]
03

Set up the ICE table

Initial concentrations: \([\mathrm{Pb}^{2+}] = 0.10\: M\), \([\mathrm{PO}_{4}^{3-}] = 0\: M\) Changes: Assume \(s\) is the concentration of \(\mathrm{PO}_4^{3-}\) at equilibrium. Then, \([\mathrm{Pb}^{2+}]\) will increase by \(3s\) and \([\mathrm{PO}_{4}^{3-}]\) will increase by \(2s\) since 3 moles of \(\mathrm{Pb}^{2+}\) forms for every 2 moles of \(\mathrm{PO}_{4}^{3-}\). Equilibrium concentrations: \([\mathrm{Pb}^{2+}] = 0.10 + 3s\: M\), \([\mathrm{PO}_{4}^{3-}] = 2s\: M\)
04

Substitute the equilibrium concentrations into the \(K_{sp}\) expression

Now, we can plug the equilibrium concentrations back into the \(K_{sp}\) expression: \(K_{sp} = (0.10 + 3s)^3(2s)^2\) Given that \(K_{sp} = 1 \times 10^{-54}\), we have: \(1 \times 10^{-54} = (0.10 + 3s)^3(2s)^2\)
05

Solve for the solubility

To solve for the solubility, we can approximate \(𝑠<<0.10\) because \(K_{sp}\) is so small that it is reasonable to assume that \(𝑠\) has a very small value. Therefore, \(1 \times 10^{-54} = (0.10)^3(2s)^2\) Now, solve for \(s\): \(s = \frac{\sqrt{1 \times 10^{-54}}}{0.10^{\frac{3}{2}} \times 2}\) \(s \approx 1.7 \times 10^{-18}\) The solubility of solid \(\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) in a \(0.10-M \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) solution is approximately \(1.7 \times 10^{-18}\: M\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a. Calculate the molar solubility of \(\operatorname{Sr} \mathrm{F}_{2}\) in water, ignoring the basic properties of \(\left.\mathrm{F}^{-} . \text {(For } \operatorname{Sr} \mathrm{F}_{2}, K_{\mathrm{sp}}=7.9 \times 10^{-10} .\right)\). b. Would the measured molar solubility of \(\operatorname{Sr} \mathrm{F}_{2}\) be greater than or less than the value calculated in part a? Explain. c. Calculate the molar solubility of \(\operatorname{Sr} \mathrm{F}_{2}\) in a solution buffered at \(\mathrm{pH}=2.00 .\left(K_{\mathrm{a}} \text { for } \mathrm{HF} \text { is } 7.2 \times 10^{-4} .\right)\).

The solubility of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\) in a \(7.2 \times 10^{-2}-M \mathrm{KIO}_{3}\) solution is \(6.0 \times 10^{-9} \mathrm{mol} / \mathrm{L} .\) Calculate the \(K_{\mathrm{sp}}\) value for \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\).

The \(K_{\mathrm{sp}}\) for lead iodide \(\left(\mathrm{PbI}_{2}\right)\) is \(1.4 \times 10^{-8} .\) Calculate the solubility of lead iodide in each of the following. a. water b. \(0.10 M \operatorname{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) c. \(0.010 M\) NaI

Assuming that the solubility of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)\) is \(1.6 \times 10^{-7}\) \(\operatorname{mol} / \mathrm{L}\) at \(25^{\circ} \mathrm{C},\) calculate the \(K_{\mathrm{sp}}\) for this salt. Ignore any potential reactions of the ions with water.

A solution is prepared by adding 0.10 mole of \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{2}\) to \(0.50 \mathrm{L}\) of \(3.0 M \mathrm{NH}_{3} .\) Calculate \(\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]\) and \(\left[\mathrm{Ni}^{2+}\right]\) in this solution. \(K_{\text {overall }}\) for \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\) is \(5.5 \times 10^{8} .\) That is, $$5.5 \times 10^{8}=\frac{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]}{\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{6}}$$ for the overall reaction $$ \mathrm{Ni}^{2+}(a q)+6 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}(a q) $$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free